An Overview of Larch/C++:
Behavioral Specifications
for C++4 Modules

Gary T. Leavens

TR #96-01e
February 1996, revised March, April 1996,
January, July 1997, January 1999

Keywords: behavioral specification, model-based, behavioral interface specification lan-
guage, Larch, C++, Larch/C++, Larch Shared Language, VDM, Z, correctness, verifi-
cation, abstract data type, object-oriented, specification inheritance, example, checkable
redundancy, behavioral subtype, informality, tunable formality.

1993 CR Categories: D.2.1 [Software Engineering] Requirements/Specifications — Lan-
guages; F.3.1 [Logics and Meaning of Programs] Specifying and verifying and reasoning
about programs — Assertions, invariants, pre- and post-conditions, specification techniques.

Copyright ©Kluwer Academic Publishers, 1996. Used by permission. An abbreviated
and earlier version of this paper is chapter 8 in the book Specification of Behavioral Seman-
tics in Object-Oriented Information Modeling, edited by Haim Kilov and William Harvey
(Kluwer Academic Publishers, 1996), pages 121-142.

Department of Computer Science
226 Atanasoff Hall
Towa State University

Ames, lowa 50011-1040, USA



AN OVERVIEW OF LARCH/C++:
BEHAVIORAL SPECIFICATIONS
FOR C++4+ MODULES

Gary T. Leavens*
Department of Computer Science
Towa State University, Ames, lowa 50011 USA

January 13, 1999

Abstract

An overview is presented of the behavioral interface specification language Larch/C++.
The features of Larch/C++ used to specify the behavior of C++ functions and classes,
including subclasses, are described, with examples. Comparisons are made with other
object-oriented specification languages. An innovation in Larch/C++ is the use of
examples in function specifications.

1 Introduction

Larch/C++ [30] is a model-based specification language that allows the specification of both
the exact interface and the behavior of a C++ [12, 46] program module.

1.1 Model-Based Specification

The idea of model-based specifications builds on two seminal papers by Hoare. Hoare’s
paper “An Axiomatic Basis for Computer Programming” [19], used two predicates over
program states to specify a computation. The first predicate specifies the requirements on
the state before the computation; it is called the computation’s precondition. The second
predicate specifies the desired final state; it is called the computation’s postcondition.

Hoare’s paper “Proof of correctness of data representations” [20], described the verifica-
tion of abstract data type (ADT) implementations. In this paper Hoare introduced the use
of an abstraction function that maps the implementation data structure (e.g., an array) to
a mathematical value space (e.g., a set). The elements of this value space are thus called
abstract values [35]. The idea is that one specifies the ADT using the abstract values, which
allows clients of the ADT’s operations to reason about calls without worrying about the
details of the implementation.

A model-based specification language combines these ideas. That is, it specifies proce-
dures (what C++ calls functions), using pre- and postconditions. The pre- and postcondi-
tions use the vocabulary specified in an abstract model, which specifies the abstract values
mathematically.

The best-known model-based specification languages are VDM-SL [21] and Z [44, 43, 17].
Both come with a mathematical toolkit from which a user can assemble abstract models
for use in specifying procedures. The toolkit of VDM-SL resembles that of a (functional)
programming language; it provides certain basic types (integers, booleans, characters), and
structured types such as records, Cartesian products, disjoint unions, and sets. The toolkit

*Leavens’s work was supported in part by NSF grants CCR-9593168 and CCR-9803843.



in 7 is based on set theory; it has a relatively elaborate notation for various set constructions,
as well as powerful techniques for combining specifications (the schema calculus).

1.2 Larch

The work of Wing, Guttag, and Horning on Larch extends the VDM-SL and Z tradition in
two directions [54, 53, 16]:

e Although a mathematical toolkit is provided [16, Appendix A], specifiers may design
their own mathematical theories using the Larch Shared Language (LSL) [16, Chapter
4]. This allows users, if they desire, to create and use an abstract model at exactly
the right level of abstraction; that is, one can either build an abstract model out of
readily available parts, or one can build a model from scratch. Clearly, not everyone
should be building models from scratch; thus it is convenient that those that do get
built can be shared, even among users of different behavioral interface specification
languages.

e Instead of one generic specification language, there are several behavioral interface
specification languages (BISLs), each tailored to specifying modules to be written in a
specific programming language. Examples include LCL [16, Chapter 5] (for C), LM3
[16, Chapter 6] (for Modula-3), Larch/Ada [15] (for Ada), Larch/CLU [54, 53] (for
CLU), Larch/Smalltalk [9] (for Smalltalk) and Larch/C++.

The advantage of tailoring each BISL to a specific programming language is that one can
specify both the behavior and the exact interface to be programmed [22]. This is of great
practical benefit, because the details of the interface that need to be specified vary among
programming languages. For example, because Larch/C++ is tailored to the specification
of C++ code, it allows users to specify the use of such C+4++ features as virtual, const,
exception handling, and exact details of the C++ types (including distinctions between types
such as int and long int, pointers and pointers to constant objects, etc.). No such details
can be specified directly in a specification language such as VDM-SL or Z that is not tailored
to C++. The same remark applies to object-oriented (OO) specification languages such as
Z++ [25, 24], ZEST [10], Object-Z [41, 42], OOZE [1, 2, 3], MooZ [37, 38], and VDM++
[39]. However, apparently there are “variants of Fresco” [50, 52] that are “derived from
C++ and Smalltalk” [51, p. 135]; these may permit more exact specification of interface
details.

The remainder of this paper gives a set of examples in Larch/C++, and then concludes
with a discussion. The set of examples specifies a hierarchy of shapes that is used as a case
study in the book Object Orientation in Z [45]. An index is provided for important ideas
and examples.

2 Quadrilaterals

To write a specification in Larch/C++, one specifies an abstract model and mathematical
vocabulary, and then uses these to specify the behavior of a C++ interface. The C++
built-in types have models that are supplied by Larch/C++ and written directly in LSL.
Users can also directly supply models for objects of their own classes in LSL, but except
for classes which are intended to be “pure values” like the built-in types, it is often more
convenient to specify the model of a class using several specification-only data members.
These specification variables are used in the specification, but do not have to be implemented.
They often take on values of a type which is not itself intended to be implemented. Examples
of both styles of class specification will be given below.

The process of specifying an abstract model and its accompanying vocabulary is not
usually completed before one begins writing the behavioral specifications. Quite often,



the specifications and the mathematics evolve together, as one searches for better ways to
express the desired behavior, and as one better understands what is desired.

To give some examples, this section describes the specification of the abstract class
QuadShape and the class Quadrilateral. I first specified QuadShape with 5 specification
variables: four vectors representing the sides and a vector giving the position (even this
builds on previous work [45]). However, it was more convenient to think of the four edge
vectors as components of some structure, so they are modeled as part of an array. Arrays are
already modeled by a built-in trait of Larch/C++ [30, Section 11.7], but it was convenient
to define some vocabulary (operators) for creating an array of values, and for testing to
see whether the vectors in such an array make a loop. In Larch/C++, such vocabulary
is specified in a LSL trait. Therefore we turn to traits and the traits used in specifying
QuadShape. (See Section2.2 for the Larch/C++ interface specification.)

2.1 Vocabulary for Specifying Quadrilaterals

Although LSL has the power to specify abstract models “from scratch,” most abstract
models are built using tuples (records), sets, and other standard mathematical tools that
are either built-in to LSL or found in Guttag and Horning’s Handbook [16, Appendix A].

A typical example is given in Figure 1. That figure specifies a theory in LSL, using
a LSL module, which is called a #rait. This trait is named FourSidedFigure, and has a
parameter Scalar, which can be replaced by another type name when the trait is used.
This trait itself includes instances of: PreVector(Scalar, Vector for Vec[T]), int, and
Val Array(Vector). The first of these gives part of the model for vectors, and will be
discussed further below. The second of these gives a model for the C4++ type int with
appropriate auxiliary definitions for C++ [30, Section 11.1.5]. The last of these gives a
model for the abstract values of C++ arrays of vectors [30, Section 11.7]. This model
includes such operations as indexing into an array using the __[__] operator. (LSL uses
the notation __ to indicate the places where arguments to mixfix operators can be passed.
For example, one can obtain the element at index 3 of an array value e by writing e[3].)
The LSL name for this type (sometimes called a sort) is Arr[Vector].

The trait Val_Array has a type parameter, the type of its elements, and the actual
parameter, Vector, replaces it. Thus the trait Val_Array(Vector) can be thought of as
a copy of the trait Val_Array, with the name Vector replacing the formal sort parameter
of Val_Array. The trait PreVector(Scalar, Vector for Vec[T]) is a copy of PreVector
with the name Scalar replacing its parameter (T), and with the name Vector replacing
Vec[T]. (These replacements are done simultaneously.)

Returning to Figure 1, in the lines following introduces, the signatures of two operators
are specified. Their theory is specified in the lines following asserts, and (what are intended
to be) redundant consequences of this theory are specified in the lines following implies.

In the asserts section, the specification defines an operator, isLoop, to test whether
four vectors define a four-sided figure [45, Section 2.2.3]. The term isLoop(e) is true
just when the vectors in the array value e sum to zero (make a loop). It is specified
using the + operator from the trait PreVector(Scalar, Vector for Vec[T]). (It would
be inconsistent (i.e., wrong) to simply assert that the edges always sum to zero; doing so
would assert that all combinations of four vectors in an array value sum to zero, but array
values can be constructed so that this does not hold. Such properties must be handled by
either constructing an abstract model from scratch, or by asserting that the property holds
at the interface level, as is done in the interface specification of QuadShape below.)

In the asserts section, the operator \<__,__,__,__\> is specified to make an array
value from its four arguments. It is specified using the assign operator on array values
from the trait Val_Array(Vector).

The implies section of Figure 1 illustrates an important feature of the Larch approach:
the incorporation of checkable redundancy into specifications. The first part of the implies
section states some theorems about the operators introduced in the asserts section. The



FourSidedFigure(Scalar): trait

includes PreVector(Scalar, Vector for Vec[T]), int,
Val_Array(Vector)

introduces
isLoop: Arr[Vector] -> Bool
\<__,__,__,__\>: Vector, Vector, Vector, Vector -> Arr[Vector]

asserts
\forall e: Arr[Vector], vi,v2,v3,v4:Vector
isLoop(e) == (e[0] + e[1] + e[2] + e[3] = 0:Vector);

\<v1,v2,v3,v4\>
== assign(assign(assign(assign(create(4), 0,v1), 1,v2), 2,v3),
3,v4);
implies

\forall e: Arr[Vector], vi,v2,v3,v4:Vector
size(\<v1,v2,v3,v4\>) == 4;
(\<v1,v2,v3,v4\>)[0] == vi1;
(\<v1,v2,v3,v4\>) [1] == v2;
(\<v1,v2,v3,v4\>)[2] == v3;
(\<v1,v2,v3,v4\>)[3] == v4;
allAllocated(\<vl,v2,v3,v4\>);
converts
isLoop:Arr[Vector] -> Bool,
\<__,_s__,__\>: Vector, Vector, Vector, Vector -> Arr[Vector]

Figure 1: The LSL trait FourSidedFigure (file FourSidedFigure.1lsl).

second part says that the two operators specified are well-defined relative to other operators.
Such redundancy can serve as a consistency check; it can also highlight consequences of the
specification for the benefit of readers. One can attempt to formally prove that the theory
stated in the implies section follows from the rest of the specification using a theorem
prover, and that may be helpful in “debugging” the specification [16, Chapter 7].

In Object Orientation in Z [45], vectors are usually treated as a given set, meaning that
their specification is of no interest. A type of values can be treated as a given set in LSL
by simply specifying the signatures of its operators that are needed in other parts of the
specification, without giving any assertions about their behavior. For example, to treat
vectors as a given set, one would have FourSidedFigure include the trait PreVectorSig, as
specified in Figure 2, instead of PreVector. Comments, which start with % and continue to
the end of a line, can be used to give some informal description of these operators if desired.

Although it is perfectly acceptable to treat vectors as a given set (and beginning users
are encouraged to make similar simplifications to avoid mathematical difficulties), one can
obtain a more precise specification (and illustrate more of the power of LSL) by fleshing out
the trait PreVector. This is done in Figure 3.

The trait PreVector specifies an abstract model of vectors. This trait specifies the type
Vec[T] with an approximate length operator!. Recall that the trait FourSidedFigure

1The specificationsin Object Orientation in Z [45] are a bit vague on exactly what capabilities are needed
by the scalar type. As there is no easy way to implement an exact length function (because some lengths
are irrational) the specification in PreVector allows the length operator to return an approximate result.



PreVectorSig(T): trait

introduces
__ 4+ __: Vecl[T], VeclT] -> VeclT]
__* __: T, Vec[T] -> Vec[T]

0: —> Vec[T]

- __: Vec[T] -> Vec[T]

__ — __: VeclT], Vec[T] -> Vec[T]
__ \cdot __: Vec[T], Vec[T] > T

length: Vec[T] -> T

Figure 2: The LSL trait PreVectorSig, which can be used if the type Vec[T] is to be
treated as a “given” (file PreVectorSig.1sl).

copies this trait and changes the names Vec[T] to Vector and T to Scalar. Such differences
in naming are common when reusing traits designed for other purposes, such as PreVector.

In the assumes clause of PreVector, the type T is required to be a ring with a unit
element, have a commutative multiplication operator (*), be totally ordered, and have
conversions to and from the real numbers. (The first three assumed traits are found in [16,
Appendix A]; the last trait, and the included trait Real that specifies the real numbers,
are found in [28].) The use of traits for stating such assumptions is similar to the way that
theories are used for parameterized specifications in OBJ [14, 13]. The assertions in the trait
PreVector specify the theory of an inner product and the approximate length function.

In the implies of PreVector, the naming of another trait, in this case PreVectorSig(T),
says that the theory of that trait is included in this trait’s theory. PreVector’s converts
clause says that there is no ambiguity in the specification of the inner product operator.
However, note that the length operator is not so well-specified, and thus is not named in
the converts clause.

To push this mathematical modeling back to standard traits, the trait PreVectorSpace,
found in Figure 4, is used. (The trait DistributiveRingAction is found in [28], the other
traits are from [16, Appendix A].)

Now that we are done with the initial mathematical modeling, we can turn to the
behavioral interface specifications.

2.2 Specification of QuadShape and Quadrilateral

Following the ZEST [10] and Fresco [51] specifications of the shapes example, the first class
to specify is an abstract class of four-sided figures, QuadShape. The reason for this is that, if
we follow [45, Chapter 2], then quadrilaterals are shearable, but some subtypes (rectangle,
rhombus, and square) are not. If we were to follow the class hierarchy given on page 8
of Object Orientation in Z [45], there would be problems, because the classes Rectangle,
Rhombus, and Square would be subtypes but not behavioral subtypes of the types of their
superclasses. Informally, a type S is a behavioral subtype of T if objects of type S can
act as if they are objects of type T [4, 5, 31, 26, 36, 32]. Having subclasses not implement
subtypes would make for a poor design; it would also make such classes unimplementable if
specified in Larch/C++. This is because Larch/C++ forces subclasses to specify behavioral
subtypes of the types of their public superclasses [11]. Thus we will follow the ZEST and
Fresco specifications in using an abstract class without a shear operation as the superclass
of Quadrilateral.

The Larch/C++ specification of the abstract class QuadShape is given in Figure 5. This
behavioral interface specification includes the behavioral interface specifications of the type



PreVector(T): trait

assumes RingWithUnit, Abelian(* for \circ),
TotalOrder, CoerceToReal(T)

includes PreVectorSpace(T), Real

introduces
__ \cdot __: Vec[T], Vec[T] -> T % inner product
length: Vec[T] -> T

asserts
\forall u,v,w: Vec[T], a, b: T

% the inner product is bilinear

(u + v) \cdot w == (u \cdot w) + (v \cdot w);
u \cdot (v + w) == (u \cdot v) + (u \cdot w);
(a * u) \cdot v == a * (u \cdot v);

(a * u) \cdot v == u \cdot (a * v);

% the inner product is symmetric (commutative)
u \cdot v == v \cdot u;

% the inner product is positive definite
(u \cdot u) >= 0;
(u \cdot u = 0) == (u = 0);

approximates(length(u), sqrt(toReal(u \cdot u)));

implies
PreVectorSig(T)
converts

__ \cdot : Vec[T], Vec[T] -> T

Figure 3: The LSL trait PreVector (file PreVector.1lsl).

Vector, which itself includes the specification of the type Scalar. In Larch/C++, one could
also specify QuadShape as a C++ template class with the types Vector and Scalar as type
parameters [30, Chapter 8], but the approach adopted here is more in keeping with the
examples in Object Orientation in 7 [45].

In the specification of QuadShape, the first thing to note is that the syntax that is not
in comments is the same as in C+4. Indeed, all of the C++ declaration syntax (with
a few ambiguities removed) is supported by Larch/C++. A C++ declaration form in a
Larch/C++ specification means that a correct implementation must be C++ code with a
matching declaration. (Hence, a Larch/C++ specification cannot be correctly implemented
in Ada or Smalltalk.) This happens automatically if, as in these examples, the behavioral
specifications are added as annotations to a C++ header file.

Annotations in Larch/C++ take the form of special comments. What to C++ looks like
a comment of the form //@ ... or /@ ... @%*/is taken as an annotation by Larch/C++.
That is, Larch/C++ simply ignores the annotation markers //@, /*@, and @*/; the text
inside what to C++ looks like a comment is thus significant to Larch/C++.



PreVectorSpace(T): trait
assumes RingWithUnit, Abelian(* for \circ)
includes AbelianGroup(Vec[T] for T, + for \circ,
0 for unit, - __ for \inv),
DistributiveRingAction(T for M, Vec[T] for T)
implies

Vecl[T])

—_

AC(+ for \circ, Vec[T] for T), Idempotent(-
\forall u,v,w: Vec[T], a, b: T

% the usual axioms, apart from the abelian group axioms

a* (u+v) ==(a*u) + (ax*v);
(a+b) *u==(a*xu) + (b*u;
(a*Db) *u==a2a* (b * u);

1 ¥ u == u;

u-v==mu+ (-v);

% some standard theorems
(u+v=u+mw =>v-=mw;
0 * u == 0:Vec[T];

-(a * u) == (-a) * u;
-(a * u) == a * (-u);
(-a) * (~u) == a * u;

(a\neq 0 /\Na*u=a*v)=>u-=v;

converts
0: —> VeclT],
__*+__: Vec[T], Vec[T] -> VeclT],
__*__: T, Vec[T] -> Vec[T],
- __: Vec[T] -> VeclT],
— __: Vecl[Tl, Vec[T] -> Vec[T]

Figure 4: The LSL trait PreVectorSpace (file PreVectorSpace.1lsl).

With such annotations, the user of Larch/C++ can specify semantic modeling informa-
tion and behavior. At the class level, this is done with the keywords ABSTRACT, uses,
and invariant; at the level of C+4 member function specifications this is done with
the keywords behavior, requires, requires redundantly, modifies, trashes, ensures,
example, and ensures redundantly.

Traits that define the vocabulary used in the specification are noted in uses clauses. In
the specification of QuadShape, the trait used is FourSidedFigure, In Figure 5, the uses
clause precedes the class definition, so that the trait will be available to clients that include
QuadShape.h. (A uses clause within the class definition has a scope that is limited to that
class.)

The use of the keyword ABSTRACT in the specification of the class QuadShape, specifies
the intent that QuadShape is not to be used to make objects; that is, QuadShape is an
abstract class. As such, it has no “constructors” and therefore no objects will exist that



#ifndef QuadShape_h
#define QuadShape_h

#include "Vector.h"
//@ uses FourSidedFigure;

/*Q@ abstract @*/ class QuadShape {
public:

//@ spec Vector edges[4];

//@ spec Vector position;

//@ invariant isLoop(edges\any);

virtual Move(const Vector& v) throw();

//@ behavior {

//@ requires assigned(v, pre);

//@ requires redundantly assigned(edges, pre)

//@ /\ assigned(position, pre) /\ isLoop(edges”);
//@ modifies positiom;

//@ trashes nothing;

//@ ensures liberally position’ = position” + v~;

//@ ensures redundantly liberally edges’ = edges”;

//@ example liberally position™ = 0:Vector /\ position’ = v~;
//@ }

virtual Vector GetVec(int i) comnst throw();
//@ behavior {

//@ requires between(1, i, 4);

//@ ensures result = edges~[i-1];

//@ example i = 1 /\ result = edges~[0];
//@ }

virtual Vector GetPosition() const throw();
//@ behavior {
//@ ensures result = position”;
//Q %}
};
#endif

Figure 5: The Larch/C++ specification of the C++ class QuadShape (file QuadShape.h).

are direct instances of such a class. This extra information could be used in consistency
checking tools [48, 47, 49].

The specification variables edges and position together describe the abstract model of
QuadShape values. (As in C++, public: starts the public part of a class specification.)
As noted above, because they use the keyword spec, they do not need to be implemented.
(An alternative specification would be to use a LSL trait that described the abstract model
directly. This was done in the original version of this paper [29], and can be seen in other
examples below.)

The invariant clause will be explained following the explanation of the member function
specifications.



Each member function specification looks like a C4++ member function declaration,
followed by a specification of the function’s behavior. The the keyword behavior starts the
behavioral part. As previously mentioned, use of the C4++ declaration syntax allows all of
the C++ function declaration syntax, including virtual, const, and throw to be used. It
also allows exact C++ type information to be recorded.

To illustrate most of the specification format, the behavioral specification of Move has
seven clauses. The requires clause gives the function’s precondition, the requires redundantly
clause states a redundant property that must hold when the function is called, the modifies
and trashes clauses form a frame axiom [6], the ensures clause gives the function’s post-
condition, the example clause gives a redundant example of its execution, and the ensures
redundantly clause states a redundant property of the specification.

The postcondition, and the assertions in the example and ensures redundantly clauses,
are predicates over two states. These states are the state just before the function body’s
execution, called the pre-state, and the state just before the function body returns (or throws
an exception), called the post-state. A C++ object (a location) can be thought of as a box,
with contents that may differ in different states. The box may also be empty. When the
box empty, the object is said to be unassigned; an object is assigned when it contains a
proper value. C++ objects are formally modeled in Larch/C++ using various traits [30,
Section 2.8], and these traits allow one to write assigned(v, pre), as in the precondition
of Move, to assert that the object v is allocated and assigned in the pre-state. (The pre-
and post-states are reified in Larch/C++ using the keywords pre and post.) There is also
a more useful notation for extracting the value of an assigned object in either state. The
value of an assigned object, o, in the pre-state is written o~ (or o\pre), and the post-state
value of o is written o’ (or o\post).

Within a member function specification, data members of class instances are objects, as
are arguments passed by reference. This includes specification variables. For example, in
QuadShape, both edges and position are considered to be objects. Thus the postcondition
of Move says that the post-state value of positionis equal to the pre-state value of position
plus the pre-state value of the vector v.

The requires redundantly clause is an example of checkable redundancy [48, 47, 49].
It allows one to state preconditions that will be true because they are implied by the stated
precondition, the invariant, or by the semantics of Larch/C++. What would be checked is
that the given precondition, and the relevant theory of the invariants and parts of the seman-
tics of Larch/C++ imply the stated assertion. For example, the first two conjuncts of Move’s
requires redundantly clause say that the specification variables edges and position are
assigned in the pre-state. (The notation /\ means “and”.) This highlights the semantics of
Larch/C++, which implicitly requires that all data members be assigned in visible states
[30, Section 6.2.2]. (The pre-state of a constructor, and the post-state of a destructor are
not considered visible states, and so are exempt from this requirement.) The last conjunct
says that the invariant holds in the pre-state. The requires redundantly clause is new
with Larch/C++.

The ensures clause of Move’s specification uses the Larch/C++ keyword liberally.
This makes it a partial correctness specification; that is, the specification says that if v is
assigned and if the execution of Move terminates, then the post-state must be as specified.
However, the function need not always terminate; for example, it might abort the program
if the numbers representing the new position would be too large to represent.

If 1iberally is omitted, then a total correctness interpretation is used; for example,
GetPosition must terminate whenever it is called. (Throwing an exception is considered
termination, only abortion of the program or infinite loops constitute nontermination.)
Neither VDM, Z, nor any other OO specification language that we know of permit mixing
total and partial correctness in this manner.

A function may modify an allocated object by changing its value from one proper value
to another, or from unassigned to some proper value. Each object that a function is allowed



to modify must be noted by that function’s modifies clause?. For example, Move is allowed
to modify position. An omitted modifies clause means that no objects are allowed to be
modified. For example, GetVec and GetPosition cannot modify any objects.

A function may trash an object by making it either become deallocated or by making its
value be unassigned. The syntax trashes nothing means that no object can be trashed,
and is the default meaning for the trashes clause when it is omitted, as in GetVec and
GetPosition. Noting an object in the trashes clause allows the object be trashed, but
does not mandate it (just as the modifies clause allows modification but does not mandate
it).

Having a distinction between modification and trashing may seem counterintuitive, but is
important in helping shorten the specifications users have to write. In older versions of LCL
and other Larch interface languages, these notions were not separated, which led to semantic
problems [7, 8]. By following Chalin’s ideas, most Larch/C++ function specifications do not
have to make assertions about whether objects are allocated and assigned in postconditions.
This is because, unless an object is named in the trashes clause, it must remain allocated
if it was allocated in the pre-state, and if it was assigned in the pre-state, then it must also
remain assigned in the post-state [30, Section 6.2.3].

An example clause adds checkable redundancy to a specification. There may be several
examples listed in a single function specification in Larch/C++. For each example, what
is checked is roughly that the example’s assertion, together with the precondition should
imply the postcondition [30, Section 6.8]. As far as we know, this idea of adding examples
to formal function specifications is new in Larch/C++.

Another instance of the checkable redundancy idea is the ensures redundantly clause.
This is taken from Tan’s work on LCL [48, 47, 49], where the idea of this kind of checkable
redundancy in behavioral interface specifications first appeared. A ensures redundantly
clause can be used to state a redundantly checkable property implied by the conjunction
of the precondition, the contributions to the postcondition of the frame axioms, and the
postcondition. In this case, the claim follows from the frame axioms, as edges cannot be
modified.

All of these parts of a function’s behavioral specification are optional, except for the
ensures clause. This is illustrated by the specification of GetPosition. When the requires
clause is omitted it defaults to requires true. (Of course, one can also omit the behavioral
specification as a whole.)

In the specification of GetVec, i is passed by value. Thus i is not considered an object
within the specification. This is why i denotes an int value, and why notations such as i~
are not used [16, Chapter 5].

The invariant clause (found just before Move’s specification) describes a property that
must be true of each assigned object of type QuadShape in each visible state [40]; it can
also be thought of as restricting the space of values for the class. The notation edges\any
stands for the abstract value of edges in any visible state. Thus the invariant in Figure 5
says that the value of the edges array in each visible state must form a loop.

Note that, by using model-based specifications, it is easy to specify abstract classes. One
imagines that objects that satisfy the specification have abstract values, even though there
are no constructors. The use of specification variables (or LSL traits) allows one to describe
the abstract values, even though an implementation might have no data members. One can
think of these as describing the abstract values of concrete subtype objects.

The type Vector does not have to be fully specified in Larch/C++ in order to be
included in the specification of QuadShape. It can be regarded as “given” by making a
specification module for it that simply declares the type Vector, and uses the appropriate
traits. An example of how to do this is shown in Figure 6. (Since the class Vector is
declared using the keyword spec, an implementation does not have to declare it as a class,

?Following Leino’s work [34], if an object o mentioned in a modifies clause has been declared to depend
on some other object o/, then o/ may also be modified. The same qualification is also applied to the trashes
clause. But this qualification is not needed to understand the examples in this paper.

10



#include "Scalar.h"

//@ spec class Vector;

//@ uses PreVector(Scalar, Vector for Vecl[T]);
//@ uses NoContainedObjects(Vector);

Figure 6: This shows how to treat Vector as a “given” type in Larch/C++ (file Vector.h).

//@ spec class Scalar;
//@ uses Scalar;

Figure 7: Treating Scalar as a “given” type in Larch/C++ (file Scalar.h).

Scalar: trait
assumes RingWithUnit(Scalar for T), Abelian(* for \circ, Scalar for T),
TotalOrder(Scalar for T)
includes CoerceToReal(Scalar)

Figure 8: The LSL trait Scalar (file Scalar.1sl).

but might define Vector with a typedef or in some other way.) Using a trait, in this case
PreVector(Scalar, Vector for Vec[T]) that specifies something with the same name
(Vector), tells Larch/C++ about the abstract model of Vector. That is, if v is a Vector
object, then the abstract value of v in some state is described by the type Vector specified
in the used traits.

In Larch/C++, several syntactic sugars depend on the ability to extract objects that
may be within an abstract value. The operator contained_objects must be specified for
each type whose abstract values are explicitly modeled by the user in order to make these
sugars work. For types like Vector, whose abstract values do not contain any objects, one
can do this by simply including an instance of the trait NoContainedObjects [30, Section
7.5] to specify contained objects in a way that says there are no subobjects in the abstract
values.

The same trick for treating Vector as a given type is also used for the type Scalar. Its
specification is given in Figure 7. The trait that it uses is given in Figure 8.

The specification of the subclass Quadrilateral is given in Figure 9. The C++ syntax
: virtual public QuadShape” is what says that Quadrilateralis a public subclass (and
hence a subtype) of QuadShape. (The keyword virtual, in C++, allows multiple inheritors
to share a single copy of the data members; this also holds in Larch/C++ for specification
variables.) In Larch/C++, a subclass is forced to be a behavioral subtype of the type of
its public superclass. Roughly speaking, the idea is that the specification of each virtual

[49

member function of QuadShape must be satisfied by a correct implementation of that virtual
member function in the class Quadrilateral.

Technically, in Larch/C++ behavioral subtyping is forced by inheriting the specification
of the supertype’s invariant and virtual member functions in the subtype [11]. Since we
have used specification variables in this example, and since these are inherited as in C++,
the virtual member function specifications of the supertype, QuadShape, are easy to apply
to the subtype. In such examples, one just forgets about extra data members in the subtype
when interpreting part of a specification inherited from the supertype. This is also the case

11



#include '"QuadShape.h"
#include "Shear.h"

class Quadrilateral : virtual public QuadShape {
public:
Quadrilateral(Vector v1, Vector v2, Vector v3, Vector v4,
Vector pos) throw();
//@ behavior {
//@ requires isLoop(\<v1,v2,v3,v4\>);
//@ modifies edges, positionm;
//@ ensures liberally edges’ = \<v1,v2,v3,v4\> /\ position’ = pos;
//e }

virtual void ShearBy(const Shear& s) throw();
//@ behavior {
//@ requires assigned(s, pre);
//@ modifies self;
//@ ensures informally "self is sheared by s";
//@ }

};

Figure 9: The Larch/C++ specification of the C++ class Quadrilateral (file
Quadrilateral.h).

in other OO specification languages, including Object-Z [41, 42], MooZ [37, 38], VDM++
[39], Z++ [25, 24], OOZE [1, 2, 3], and ZEST [10].

(In Larch/C++, and in other Larch-style BISLs, such as LM3 [16, Chapter 6], and
Larch/Smalltalk [9], abstract models do not have to be given by specification variables®.
For example, in Larch/C++, one can specify a supertype and a subtype and give both of
them arbitrary models by writing an LSL trait for each. In such a case, when one does
not use specification variables to describe the abstract models of both the subtype and the
supertype, giving a semantics to inherited specifications is a problem. See our other work
[9, 27, 11] for how to handle such uncommon cases, and the Larch/C++ reference manual
[30] for the details in Larch/C++.)

The “constructor” specified for the class Quadrilateral has the same name as the class
in C++4. Constructors in C++ really are initializers, and this constructor must set the post-
state values of the specification variables to the appropriate abstract value. The requires
clause is needed so that the object will satisfy the invariant inherited from QuadShape.

The specification of ShearBy illustrates another feature of Larch/C++: informal terms.
An informal term starts with the keyword informally and is followed by one or more string
constants. An informal term can be used anywhere a boolean term can be used. An informal
term can thus be used to selectively suppress details about a specification. This suppression
of detail is done frequently in the specifications in Object Orientation in Z [45] by using
comments instead of formal specifications when discussing shearing. The use of informal
terms is similar, but more tightly integrated, since informal terms can appear within more
complex predicates. This example also illustrates how one can use informal predicates to
“tune” the level of formality in a Larch/C++ specification. For example, in Larch/C++
one could start out by using largely informal specifications, and then increase the level of
formality as needed or desired. Informal terms, and their tight integration into Larch/C++,

3Indeed, Larch/C++ is the only Larch-style BISL for which abstract models can be given by using
specification variables.

12



//@ spec class Shear;
//@ uses NoContainedObjects(Shear); //see a book on computer graphics

Figure 10: The specification of Shear (file Shear.h).

is something that is new with Larch/C++ [29].

The type Shear is specified as a given set in Figure 10. In this example, no signature is
given for the trait functions that operate on the type Shear, because that type is only used
informally. Using the trait NoContainedObjects(Shear) is enough to tell Larch/C++ that
the abstract values are explicitly specified.

3 Other Subtypes of QuadShape

This section contains the specifications of the other subtypes of QuadShape described in
Object Orientation in 7 [45].

As in the ZEST specification of the shapes examples [10], we start with the abstract type
ParallelShape, which is shown in Figure 11. The invariant clause in this specification
says that the abstract values of such objects must have edges with parallel sides. (The
operator isaParallelogram is specified in the trait shown in Figure 12.)

An interesting aspect of ParallelShape (apparently overlooked in all the specifications
in Object Orientation in 7 [45]) is that if all the sides of a quadrilateral are zero length, then
the angle to be returned by AnglePar is not well-defined. The specification of AnglePar
illustrates how to specify exceptions to handle such cases. (By specifying an exception,
the normal case is allowed to have a stronger precondition, and hence its precondition can
protect the postcondition from undefinedness [33].) Note first that the body of AnglePar
has two pairs of pre- and postcondition specifications. Larch/C++ actually permits any
number of these specification cases in a function specification body; the semantics is that
the implementation must satisfy all of them [54, Section 4.1.4] [50, 51, 52] and that a caller
must establish the disjunction of the preconditions. Thus this specification says that if the
receiver’s edges describe a shape with an interior, the appropriate angle must be returned,
and if not, then it must throw the exception NoInterior. (The notations ~ and \/ mean
“not” and “or” respectively.) Although the mathematics of angles is left informal, the
specification of the exception is formalized. @ The term returns is true just when the
function returns normally without throwing any exception, and throws(NoInterior) is
true just when the function throws an exception of type NoInterior. The claim in the
exceptional case shows how one can describe the abstract value of the exception result of a
given type. (In this case the claim is trivially true, because there are no other proper values
and the exception result is passed by value.)

The specification of the type NoInterior is in Figure 13. This specification uses an
instance of the Larch/C++ built-in trait NoInformationExecption [30, Section 6.10] to
specify the abstract model of the type NoInterior. This trait is designed as an aid in
specifying abstract models for exception types in which no significant information is being
passed; it says that there is only one abstract value: theException. The class specification
also specifies the default constructor. In Larch/C++, the keyword self denotes the object
that C++ programs refer to as #this; that is, self is a name for the object being con-
structed (or the object receiving a message in a member function). In a specification where
the abstract model is given explicitly by an LSL trait (in this case by the first trait used),
the value of self’ is one of the values described in that trait.

Turning to another concrete class specification, the type Parallelogram (see Figure 14)
is a public subclass of both Quadrilateral and ParallelShape. (This follows the design

13



#ifndef ParallelShape_h
#define ParallelShape_h

#include '"QuadShape.h"
#include "NoInterior.h"

/*Q@ abstract @*/ class ParallelShape : virtual public QuadShape {
public:

//@ uses IsaParallelogram(Scalar);

//@ invariant isaParallelogram(edges\any);

virtual double AnglePar() const throw(NoInterior);
//@ behavior {

//@ requires “(edges~[0] = 0 \/ edges~[1] = 0);
//@ ensures returns

//@ /\ informally "result is the angle between edges~[0] and"
//@ "edges~[1]";
//@ also

//@ requires edges”~[0] = 0 \/ edges~[1] = 0;
//@ ensures throws(NoInterior);
//@ ensures redundantly thrown(NoInterior) = theException;
//@ }
};
#endif

Figure 11: The Larch/C++ specification of the C++4 class ParallelShape (file
ParallelShape.h).

IsaParallelogram(Scalar): trait
includes FourSidedFigure(Scalar)
introduces
isaParallelogram: Arr[Vector] —> Bool
asserts \forall e: Arr[Vector]

isaParallelogram(e) == isLoop(e) /\ (e[0] + e[2] = 0:Vector);
implies \forall e: Arr[Vector]
isaParallelogram(e) == isLoop(e) /\ (e[1] + e[3] = 0:Vector);

Figure 12: The LSL trait IsaParallelogran (file IsaParallelogram.1lsl).

in Object Orientation in 7 [45]; whether this is a good idea for a design in C++ is de-
batable.) Tt inherits the specifications of each, including the ShearBy member function of
Quadrilateral, and the invariant from ParallelShape (including the inherited invariant
from QuadShape). This is done by specifying a simulation function for each supertype. Of
course, the constructor of Quadrilateral is not inherited, and so a constructor must be
specified. This specification is a partial correctness specification, which allows for cases in
which the vector cannot be successfully negated.

Another shape type is Rhombus, which is specified in Figure 15. This class is specified
as a public subclass of ParallelShape. The trait used to specify the operator isaRhombus
is in Figure 16.

14



//@ uses NoInformationException(NoInterior),
//@ NoContainedObjects(NoInterior);

class NoInterior {
public:
NoInterior() throw();
//@ behavior {
//@ modifies self;
//@ ensures self’ = theException;
//Q }
};

Figure 13: The Larch/C++ specification of the C++ class NoInterior (file NoInterior.h).

#include "Quadrilateral.h"
#include "ParallelShape.h"

class Parallelogram : public Quadrilateral, public ParallelShape {
public:

Parallelogram(Vector vi, Vector v2, Vector pos) throw();
//@ behavior {
//@ modifies edges, position;
//@ ensures liberally edges’ = \<vi,v2,-vi,-v2\>
//@ /\ position’ = pos;
//@ }
};

Figure 14: The Larch/C++4 specification of the C++4 class Parallelogram (file
Parallelogram.h).

The class Rectangle is specified in Figure 17. Its invariant is specified using the trait
IsaRectangle from Figure 18.

Finally, in Figure 19 the class Square is specified as a public subclass of both Rhombus
and Rectangle. The trait IsaSquare, given in Figure 20, is used in the specification of the
constructor to state a claim that follows from the inherited invariant, but which might not
otherwise be obvious.

4 Discussion and Conclusions

The shapes example from Object Orientation in Z [45] is perhaps not ideal for illustrating
the mechanisms in Larch/C++ used for specification inheritance, as the subtypes all use the
same set of specification variables and no member function specifications are strengthened.
In our other work [11, 30], we give more interesting examples, in which the abstract models
of the subtype objects contain more information than objects of their supertypes.
However, the shapes example does permit direct comparison to the OO specification
languages presented in Object Orientation in Z [45]. The following are the most basic

15



#include '"ParallelShape.h'

class Rhombus : virtual public ParallelShape {
public:

//@ uses IsaRhombus;

//@ invariant isaRhombus(edges\any);

Rhombus (Vector vi, Vector v2, Vector pos) throw();
//@ behavior {
//@ requires length(vl) = length(v2);
//@ modifies edges, position;
//@ ensures liberally edges’ = \<v1,v2,-vi,-v2\>
//e /\ position’ = pos;
//Q %}
};

Figure 15: The Larch/C++ specification of the C++ class Rhombus (file Rhombus . h).

IsaRhombus: trait
includes IsaParallelogram

introduces
isaRhombus: Arr[Vector] -> Bool
asserts
\forall e: Arr[Vector]
isaRhombus(e) == isaParallelogram(e)
/\ (length(e[0]) = length(e[1]));
implies

\forall e: Arr[Vector]
isaRhombus(e) => isaParallelogram(e);

isaRhombus(e) == isaParallelogram(e)
/\ (length(e[0]) = length(e[2]));
isaRhombus(e) == isaParallelogram(e)

/\ (length(e[0]) = length(e[31));

Figure 16: The LSL trait IsaRhombus (file IsaRhombus.1sl).

points of similarity and difference.

e The LSL traits specified in the examples correspond roughly to the 7 specifications
given in Chapter 2 of Object Orientation in Z [45]. This says that LSL is roughly
comparable to Z in terms of modeling power. However, LSL includes syntax for stating
redundant properties of traits, which may help catch errors in such mathematical
modeling.

e The behavioral interface specifications are roughly comparable to the various OO
specifications written in the OO specification languages in Object Orientation in 7
[45], in particular to ZEST and Fresco. However, only for Fresco is there even a hint
[51, p. 135] that it may be able to specify the C++ interface details that Larch/C++
can specify.

16



#include '"ParallelShape.h'

class Rectangle : virtual public ParallelShape {
public:

//@ uses IsaRectangle;

//@ invariant isaRectangle(edges\any);

Rectangle(Vector vi, Vector v2, Vector pos) throw();
//@ behavior {
//@ requires vi \cdot v2 = 0:Vector;
//@ modifies edges, position;
//@ ensures liberally edges’ = \<v1,v2,-vi,-v2\>
//e /\ position’ = pos;
//Q %}
};

Figure 17: The Larch/C++ specification of the C++ class Rectangle (file Rectangle.h).

IsaRectangle: trait
includes IsaParallelogram

introduces
isaRectangle: Arr[Vector] -> Bool
asserts
\forall e: Arr[Vector]
isaRectangle(e) == isaParallelogram(e) /\ (e[0] \cdot e[1] = 0);
implies
\forall e: Arr[Vector]
isaRectangle(e) => isaParallelogram(e);
isaRectangle(e) == isaParallelogram(e) /\ (e[1] \cdot e[2] = 0);

Figure 18: The trait IsaRectangle (file IsaRectangle.1lsl).

It is important that a formal specification language not require one to formalize every
detail. By allowing one to leave some types of data, some operations, and some aspects of
behavior informal, Larch/C++, like Z and other OO specification languages, allows users to
focus on what is important. In LSL, informality is accomplished by omitting specifications,
as in Figure 2. In Larch/C++ informality can also be accomplished by omitting specifica-
tions as in Figure 6, but more fine-grained tuning is permitted by the use of the informal
predicates.

Larch/C++ is a large, but expressive, specification language. Most of its size and com-
plexity arises from the complexity of C4++, which, for example, has a large and complex
declaration syntax, and a large number of low-level, built-in types. Although Larch/C++
has several features that other formal specification languages do not have, these features
earn their place by adding much to the expressiveness of the language. For instance, the
requires redundantly, example, and ensures redundantly clauses in function specifi-
cations add syntax, but they allow additional checking and also allow one to convey extra

17



#include "Rhombus.h"
#include "Rectangle.h"

class Square : public Rhombus, public Rectangle {
public:

Square(Vector vi, Vector pos) throw();

//@ behavior {

//@ uses IsaSquare;

//@ modifies edges, position;

//@ ensures liberally edges’[1] = v1 /\ position’ =
//@ ensures redundantly liberally isaSquare(edges’);

//@ }

pos;

Figure 19: The Larch/C++ specification of the C++ class Square (file Square.h).

IsaSquare: trait
includes IsaRectangle, IsaRhombus

introduces
isaSquare: Arr[Vector] -> Bool
asserts
\forall e: Arr[Vector]
isaSquare(e) == isaRectangle(e) /\ isaRhombus(e);

Figure 20: The LSL trait IsaSquare (file IsaSquare.1lsl).

information about the meaning and intent of a specification. The requires redundantly
and example clauses are new with Larch/C++; the idea for the ensures redundantly
clause and redundancy in interface specifications is due to Tan [48, 47, 49]. (Tan called this
a claims clause.)

More important for expressiveness are some fundamental semantic ideas that, while
they also add to the complexity of the language, add new dimensions to the expressiveness
of the language. One semantic idea is the distinction between trashing and modification
[7, 8], which places the frame axiom of Larch-style specification languages on a firm semantic
foundation. In Larch/C++ one can also specify such notions as whether storage is allocated
or assigned. More important, allowing the user to specify both total and partial correctness
for functions gives to users a choice previously reserved by specification language designers;
the use of partial correctness, for example, is necessary for succinct specification of functions
that may fail due to the finiteness of various data structures [19]. Allowing the specification
of several specification cases (an idea due to Wing [54, Section 4.1.4] and Wills [50, 51, 52]) is
convenient for the specification of exceptions and for giving a concrete form to specification
inheritance [11]. Furthermore, when combined with the ability to specify both total and
partial correctness, the expressiveness of the specification language becomes much more
complete [18].

The Larch approach of behavioral interface specification [54, 53], and the expressive
features of Larch/C++ make it a step towards the more practical and useful formal docu-
mentation for object-oriented classes.

18



Acknowledgements

This work was supported in part by NSF grants CCR-9503168 and CCR-9803843. Thanks
to Adrian Fiech and Rustan Leino for suggestions and comments on earlier drafts. Rustan’s
comments led to several improvements in the semantics. Thanks also to Yoonsik Cheon, who
helped design Larch/C++, and to Matt Markland who helped implement the Larch/C++

checker.

References

(1]

[10
[11]

[t

[12]

[13]

A. J. Alencar and J. A. Goguen. OOZE: An object oriented Z environment. In P. America,
editor, FCOOP ’91: European Conference on Object Oriented Programming, volume 512 of
Lecture Notes in Computer Science, pages 180-199. Springer-Verlag, New York, N.Y., 1991.

A. J. Alencar and J. A. Goguen. OOZE. In Stepney et al. [45], pages 79 94.

A. J. Alencar and J. A. Goguen. Specification in OOZE with examples. In Lano and Haughton
[23], pages 158-183.

Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Jean
Bezivin et al., editors, FCOOP ’87, FEuropean Conference on Object-Oriented Programming,
Paris, France, pages 234-242, New York, N.Y., June 1987. Springer-Verlag. Lecture Notes in
Computer Science, Volume 276.

Pierre America. Designing an object-oriented programming language with behavioural subtyp-
ing. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, volume 489 of Lecture Notes in Computer Science, pages 60-90. Springer-Verlag, New
York, N.Y., 1991.

Alex Borgida, John Mylopoulos, and Rayomnd Reiter. On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering, 21(10):785-798, October 1995.

Patrice Chalin. On the Language Design and Semantic Foundation of LCL, a Larch/C Interface
Specification Language. PhD thesis, Concordia University, 1455 de Maisonneuve Blvd. West,
Montreal, Quebec, Canada, October 1995. Available as CU/DCS TR 95-12; from the URL
ftp://ftp.cs.concordia.ca/pub/chalin /tr.ps.Z.

Patrice Chalin, Peter Grogono, and T. Radhakrishnan. Identification of and solutions to
shortcomings of LCL, a Larch/C interface specification language. In Marie-Claude Gaudel
and James Woodcock, editors, FME ’96: Industrial Benefit and Advances in Formal Methods,
volume 1051 of Lecture Notes in Computer Science, pages 385-404, New York, N.Y., March
1996. Springer-Verlag.

Yoonsik Cheon and Gary T. Leavens. The Larch/Smalltalk interface specification language.
ACM Transactions on Software Engineering and Methodology, 3(3):221-253, July 1994.

Elspeth Cusack and G. H. B. Rafsanjani. ZEST. In Stepney et al. [45], pages 113-126.

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specifica-
tion inheritance. In Proceedings of the 18th International Conference on Software Engineering,
Berlin, Germany, pages 258-267. IEEE Computer Society Press, March 1996. A corrected
version is lowa State University, Dept. of Computer Science TR #95-20c.

Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley Publishing Co., Reading, Mass., 1990.

Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Principles
of OBJ2. In Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 52-66. ACM, January 1985.

Joseph A. Goguen. Parameterized programming. IFEF Transactions on Software Fngineering,
SE-10(5):528-543, September 1984.

David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Ada programs.
IEEE Transactions on Software Engineering, 16(9):1058-1075, September 1990.

19



[16]
[17]
[15]
[19]
[20]
[21]
[22]
[23]
[24]

(23]
[26]

[27]

[28]

[29]

[30]

31]

[32]

33]

34]
[33]

[36]

John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing.
Larch: Languages and Tools for Formal Specification. Springer-Verlag, New York, N.Y., 1993.

1. Hayes, editor. Specification Case Studies. International Series in Computer Science. Prentice-
Hall, Inc., second edition, 1993.

Wim H. Hesselink. Programs, Recursion, and Unbounded Choice, volume 27 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, New York, N.Y., 1992.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-583, October 1969.

C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271-281,
1972.

Cliff B. Jones. Systematic Software Development Using VDM. International Series in Computer
Science. Prentice Hall, Englewood Cliffs, N.J., second edition, 1990.

Leslie Lamport. A simple approach to specifying concurrent systems. Communications of the
ACM, 32(1):32-45, January 1989.

K. Lano and H. Haughton, editors. Object-Oriented Specification Case Studies. The Object-
Oriented Series. Prentice Hall, New York, N.Y., 1994.

K. Lano and H. Haughton. Specifying a concept-recognition system in Z++. In Lano and
Haughton [23], chapter 7, pages 137-157.

Kevin C. Lano. Z++. In Stepney et al. [45], pages 106-112.

Gary T. Leavens. Modular specification and verification of object-oriented programs. IFEF
Software, 8(4):72-80, July 1991.

Gary T. Leavens. Inheritance of interface specifications (extended abstract). In Proceedings
of the Workshop on Interface Definition Languages, volume 29(8) of ACM SIGPLAN Notices,
pages 129 138, August 1994.

Gary T. Leavens. LSL math traits. http://www.cs.iastate.edu/~leavens/Math-traits.html, Jan
1996.

Gary T. Leavens. An overview of Larch/C++: Behavioral specifications for C++ mod-
ules. In Haim Kilov and William Harvey, editors, Specification of Behavioral Semantics in
Object-Oriented Information Modeling, chapter 8, pages 121-142. Kluwer Academic Publish-
ers, Boston, 1996. An extended version is TR #96-01d, Department of Computer Science,
Towa State University, Ames, lowa, 50011.

Gary T. Leavens. Larch/C++ Reference Mannual. Version 5.39. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++ /lcpp.ps.gz or on the World Wide Web at the URL
http://www.cs.iastate.edu/~leavens/larchc++.html, April 1999.

Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programs that use
subtypes (extended abstract). In N. Meyrowitz, editor, OOPSLA ECOOP ’90 Proceedings,
volume 25(10) of ACM SIGPLAN Notices, pages 212-223. ACM, October 1990.

Gary T. Leavens and William E. Weihl. Specification and verification of object-oriented pro-
grams using supertype abstraction. Acta Informatica, 32(8):705-778, November 1995.

Gary T. Leavens and Jeannette M. Wing. Protective interface specifications. Technical Report
96-04d, Towa State University, Department of Computer Science, September 1997. In Michel
Bidoit and Max Dauchet (editors), TAPSOFT ’97: Theory and Practice of Software Develop-
ment, 7th International Joint Conference CAAP/FASE, Lille, France. Volume 1214 of Lecture
Notes in Computer Science, Springer-Verlag, 1997, pages 520-534. Available by anonymous ftp
from ftp.cs.iastate.edu or by e-mail from almanac@cs.iastate.edu.

K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Report Caltech-CS-TR-95-03.

Barbara Liskov and John Guttag. Abstraction and Specification in Program Development. The
MIT Press, Cambridge, Mass., 1986.

Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811-1841, November 1994.

20



[37)
[36]
[39]
[40]

[41]
[42]

[43]

[44]

[48]

[49]

Silvio Lemos Meira and Ana Licia C. Cavalcanti. MooZ case studies. In Stepney et al. [45],
pages 37-58.

Silvio Lemos Meira, Ana Licia C. Cavalcanti, and Cassio Souza Santos. The Unix filing system:
A MooZ specification. In Lano and Haughton [23], chapter 4, pages 80-109.

Swapan Mitra. Object-oriented specification in VDM++. In Lano and Haughton [23], chap-
ter 6, pages 130-136.

Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs. Habilitation
thesis, Technical University of Munich, January 1997.

Gordon Rose. Object-Z. In Stepney et al. [45], pages 59-77.

Gordon Rose and Roger Duke. An Object-Z specification of a mobile phone system. In Lano
and Haughton [23], chapter 5, pages 110-129.

J. Spivey. An introduction to Z and formal specifications. Software Fngineering Journal,
January 1989.

J. Michael Spivey. The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice-Hall, New York, N.Y., second edition, 1992.

Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Orientation in Z. Work-
shops in Computing. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

Bjarne Stroustrup. The C++ Programming Language: Second Edition. Addison-Wesley Pub-
lishing Co., Reading, Mass., 1991.

Yang Meng Tan. Formal specification techniques for promoting software modularity, enhancing
documentation, and testing specifications. Technical Report 619, Massachusetts Institute of
Technology, Laboratory for Computer Science, 545 Technology Square, Cambridge, Mass.,
June 1994.

Yang Meng Tan. Interface language for supporting programming styles. ACM SIGPLAN
Notices, 29(8):74-83, August 1994. Proceedings of the Workshop on Interface Definition Lan-
guages.

Yang Meng Tan. Formal Specification Techniques for Engineering Modular C' Programs, vol-
ume 1 of Kluwer International Series in Software Fngineering. Kluwer Academic Publishers,
Boston, 1995.

Alan Wills. Capsules and types in Fresco: Program validation in Smalltalk. In P. America,
editor, FCOOP ’91: Furopean Conference on Object Oriented Programming, volume 512 of
Lecture Notes in Computer Science, pages 59-76. Springer-Verlag, New York, N.Y., 1991.

Alan Wills. Specification in Fresco. In Stepney et al. [45], chapter 11, pages 127-135.
Alan Wills. Refinement in Fresco. In Lano and Houghton [23], chapter 9, pages 184-201.

Jeannette M. Wing. Writing Larch interface language specifications. ACM Transactions on
Programming Languages and Systems, 9(1):1-24, January 1987.

Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical Report
TR-299, Massachusetts Institute of Technology, Laboratory for Computer Science, 1983.

21



Index

abstract class, 7, 10
abstract data type (ADT), 1
abstract model, 1, 16
abstract value, 1

abstraction function, 1

Ada, 2

assigned variable, 9

behavior, 1
behavioral interface specification, 2, 16
behavioral subtype, 11

C, 2
C++,1,2
Chalin, 10

checkable redundancy, 3, 9, 10
class, abstract, 7, 10
consistency checking, 7
constructor, 12

contained objects, 11

deallocation, 10

ensures redundantly, 10
examples, in specification, 10
examples, in specifications, 9
exception, specification of, 13
expressiveness, 17

formality, tunable, 10
formality, tuning, 4, 12
FourSidedFigure trait, 3
frame axiom, 9

Fresco, 5

given set, 4, 10
Guttag, 2

Hoare, 1
Horning, 2

informality, 4, 10, 12, 17
inheritance, of specifications, 11
interface, 1

interface specification, behavioral, 16
invariant, 10

IsaParallelogram trait, 13
IsaRectangle trait, 14

IsaRhombus trait, 14

IsaSquare trait, 15

Larch, 2

Larch Shared Language, 2
Larch/Ada, 2
Larch/C++, 1, 2
Larch/Smalltalk, 2, 11
LCL, 2, 7, 10

22

LCLint, 7

Leino, 9

liberal specification, 9
LM3, 2, 11

LSL, 2, 3

model-based, 1
model-based specification, 1
modeling process, 2

modify, 9

Modula-3, 2

MooZ, 2, 11

Nolnterior trait, 13

OBJ, 4
Object-Z, 2, 11
OO0OZE, 2, 11

Parallelogram, 13
ParallelShape, 13
partial correctness, 9
post-state, 9
postcondition, 1
pre-state, 9
precondition, 1
PreVector trait, 4
PreVectorSig trait, 4
PreVectorSpace trait, 5

Quadrilateral, 11
QuadShape, 5

Rectangle, 14
redundancy, checkable, 3, 9, 10
requires redundantly clause, 9

returns, 13
Rhombus, 14

Scalar, 11
Scalar trait, 11
Shear, 13
Smalltalk, 2

specification case, in Larch/C++, 13

specification inheritance, 11
specification variable, 2
specification variables, 8
specifying exceptions, 13
Square, 15

subclass, 11

subtype, behavioral, 11
supertype, behavioral, 11

Tan, 10, 17

throws, an exception, 13
trait, 3

trash, 10



tunable formality, 10
tuning formality, 4

unassigned variable, 9

VDM++, 2, 11

VDM-SL, 1

Vector, 10

virtual, member function spec., 11

Wing, 2
Z, 1

74+, 2, 11
7EST, 2, 5, 11

23



