A Gentle Introduction to CASL

Michel Bidoit
LSV, CNRS \& ENS de Cachan, France

Peter D. Mosses

BRICS \& University of Aarhus, Denmark

WWW. cofi.info
> Copyright (c) 2004 Michel Bidoit and Peter D. Mosses, and CoFI, The Common Framework Initiative for Algebraic Specification and Development.

Permission is granted to anyone to make or distribute verbatim copies of this document, in any medium, provided that the copyright notice and permission notice are preserved, and that the distributor grants the recipient permission for further redistribution as permitted by this notice. Modified versions may not be made.

June 4, 2004

This Casl Tutorial is a companion document to the Casl User Manual, by Michel Bidoit and Peter D. Mosses, published in 2004 as Springer LNCS 2900.

Contents

Introduction 4
Underlying Concepts 7
Foundations 11
Getting Started 13
Loose Specifications 14
Generated Specifications 27
Free Specifications 32
Partial Functions 47
Subsorting 66
Structuring Specifications 79
Generic Specifications 92
Specifying the Architecture of Implementations 119
Libraries 142
Tools 158

Introduction

> There was an urgent need for a common framework.

- CoFl aims at establishing a wide consensus.
> The focus of CoFl is on algebraic techniques.
> CoFl has already achieved its main aims.
- CoFl is an open, voluntary initiative.
> CoFI has received funding as an ESPRIT Working Group, and is sponsored by IFIP WG 1.3.
> New participants are welcome!
- CASL has been designed as a general-purpose algebraic specification language, subsuming many existing languages.
- CASL is at the center of a family of languages.

The Casl Family of Languages

- CASL itself has several major parts.

Underlying Concepts

- CASL is based on standard concepts of algebraic specification.
- A basic specification declares symbols, and gives axioms and constraints.
- The semantics of a basic specification is a signature and a class of models.
- CASL specifications may declare sorts, subsorts, operations, and predicates.
- Subsorts declarations are interpreted as embeddings.
- Operations may be declared as total or partial.
- Predicates are different from boolean-valued operations.
- Operation symbols and predicate symbols may be overloaded.
- Axioms are formulas of first-order logic.
- Sort generation constraints eliminate 'junk' from specific carrier sets.
> Structured specifications.
- The semantics of a structured specification is simply a signature and a class of models.
- A translation merely renames symbols.
- Hiding symbols removes parts of models.
- Union of specifications identifies common symbols.
- Extension of specifications identifies common symbols too.
- Free specifications restrict models to being free, with initiality as a special case.
- Generic specifications have parameters, and have to be instantiated when referenced.
> Architectural specifications and Libraries.
- The semantics of an architectural specification reflects its modular structure.
- Architectural specifications involve the notions of persistent function and conservative extension.
- The semantics of a library of specifications is a mapping from the names of the specifications to their semantics.

Foundations

- A complete presentation of CASL is in the Reference Manual
- Casl has a definitive summary.
- Casl has a complete formal definition.
- Abstract and concrete syntax of CASL are defined formally.
- Casl has a complete formal semantics.
- Casl specifications denote classes of models.
- The semantics is largely institution-independent.
- The semantics is the ultimate reference for the meanings of all CASL constructs.
- Proof systems for various layers of CASL are provided.
- A formal refinement concept for CASL specifications is introduced.
- The foundations of our CASL are rock-solid!

Getting Started

- Simple specifications may be written in CASL essentially as in many other algebraic specification languages.
- CASL provides also useful abbreviations.
- Casl allows loose, generated and free specifications.

Loose Specifications

- Casl syntax for declarations and axioms involves familiar notation, and is mostly self-explanatory.
spec Strict_Partial_Order $=$
\% \% Let's start with a simple example!
sort Elem
pred __ < _- : Elem \times Elem \% \% pred abbreviates predicate
$\forall x, y, z:$ Elem
- $\neg(x<x)$
\%(strict)\%
- $x<y \Rightarrow \neg(y<x) \quad \%$ (asymmetric) $\%$
- $x<y \wedge y<z \Rightarrow x<z \quad \%($ transitive) $\%$
$\%\{$ Note that there may exist x, y such that
neither $x<y$ nor $y<x$. \}\%
end
- Specifications can easily be extended by new declarations and axioms.
spec Total_Order $=$
Strict_Partial_Order
then $\forall x, y$: Elem • $x<y \vee y<x \vee x=y \quad \%($ total $) \%$
end
> In simple cases, an operation (or a predicate) symbol may be declared and its intended interpretation defined at the same time.
spec Total_Order_With_MinMax =
Total_Order
then ops $\min (x, y:$ Elem $):$ Elem $=x$ when $x<y$ else y;

$$
\max (x, y: \text { Elem }): \text { Elem }=y \text { when } \min (x, y)=x \text { else } x
$$

end
spec Variant_Of_Total_Order_With_MinMax = Total_ORDER
then vars $x, y:$ Elem
op min : Elem \times Elem \rightarrow Elem

- $x<y \Rightarrow \min (x, y)=x$
- $\neg(x<y) \Rightarrow \min (x, y)=y$
op max : Elem \times Elem \rightarrow Elem
- $x<y \Rightarrow \max (x, y)=y$
- $\neg(x<y) \Rightarrow \max (x, y)=x$
end
- Symbols may be conveniently displayed as usual mathematical symbols by means of \%display annotations.
\%display _-<=_- \%LATEX _- \leq
spec Partial_Order =
Strict_Partial_Order
then pred ${ }_{--} \leq_{--}(x, y:$ Elem $) \Leftrightarrow(x<y \vee x=y)$
end
> The \%implies annotation is used to indicate that some axioms are supposedly redundant, being consequences of others.
spec Partial_Order_1 =
Partial_Order
then \%implies
$\forall x, y, z:$ Elem • $x \leq y \wedge y \leq z \Rightarrow x \leq z \quad$ \%(transitive) $\%$
end
spec Implies_Does_Not_Hold =
Partial_Order
then \%implies
$\forall x, y$: Elem • $x<y \vee y<x \vee x=y \quad \%$ (total) $\%$
end
> Attributes may be used to abbreviate axioms for associativity, commutativity, idempotence, and unit properties.
spec Monoid $=$
sort Monoid
ops 1 : Monoid;
_- * _- : Monoid \times Monoid \rightarrow Monoid, assoc, unit 1
end
- Genericity of specifications can be made explicit using parameters.
spec Generic_Monoid [sort Elem] =
sort Monoid
ops inj : Elem \rightarrow Monoid;
1 : Monoid;
_- * _- : Monoid \times Monoid \rightarrow Monoid, assoc, unit 1
$\forall x, y: \operatorname{Elem} \bullet \operatorname{inj}(x)=\operatorname{inj}(y) \Rightarrow x=y$
end

spec Non_GENERIC_Monoid $=$

sort Elem
then sort Monoid
ops inj : Elem \rightarrow Monoid;
1 : Monoid;
_- * _- : Monoid \times Monoid \rightarrow Monoid, assoc, unit 1
$\forall x, y: \operatorname{Elem} \bullet \operatorname{inj}(x)=\operatorname{inj}(y) \Rightarrow x=y$
end
> References to generic specifications always instantiate the parameters.
spec Generic_Commutative_Monoid [sort Elem] = GEneric_Monoid [sort Elem]
then $\forall x, y$: Monoid • $x * y=y * x$
end
spec Generic_Commutative_Monoid_1 [sort Elem] = GEneric_Monoid [sort Elem]
then op _-* _- : Monoid \times Monoid \rightarrow Monoid, comm
end

- Datatype declarations may be used to abbreviate declarations of sorts and constructors.
spec Container [sort Elem] $=$
type Container $::=$ empty \mid insert(Elem; Container)
pred __is_in_- : Elem \times Container
$\forall e, e^{\prime}$: Elem; C : Container
- $\neg(e$ is_in empty)
- e is_in $\operatorname{insert}\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.C\right)$
end
- Loose datatype declarations are appropriate when further constructors may be added in extensions.
spec Marking_Container [sort Elem] = CONTAINER [sort Elem]
then type Container $::=$ mark_insert(Elem; Container) pred __is_marked_in_- : Elem \times Container
$\forall e, e^{\prime}$: Elem; C : Container
- e is_in mark_insert $\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.C\right)$
- $\neg(e$ is_marked_in empty $)$
- e is_marked_in insert $\left(e^{\prime}, C\right) \Leftrightarrow e$ is_marked_in C
- e is_marked_in mark_insert $\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_marked_in $\left.C\right)$
end

Generated Specifications

> Sorts may be specified as generated by their constructors.
spec Generated_Container [sort Elem] = generated type Container $::=$ empty \mid insert(Elem; Container)
pred __is_in_-_ : Elem \times Container
$\forall e, e^{\prime}:$ Elem; C $:$ Container

- $\neg(e$ is_in empty $)$
- e is_in $\operatorname{insert}\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.C\right)$
end
- Generated specifications are in general loose.
spec Generated_Container_Merge [sort Elem] = GENERATED_CONTAINER [sort Elem]
then op _-merge_- : Container \times Container \rightarrow Container
$\forall e:$ Elem; $C, C^{\prime}:$ Container
- e is_in $\left(C\right.$ merge $\left.C^{\prime}\right) \Leftrightarrow\left(e\right.$ is_in $C \vee e$ is_in $\left.C^{\prime}\right)$
end
> Generated specifications need not be loose.
spec Generated_Set [sort Elem] =
generated type Set $::=$ empty \mid insert(Elem; Set)
pred __is_in_- : Elem \times Set
ops $\quad\{--\}(e:$ Elem $):$ Set $=\operatorname{insert}(e$, empty $)$;
-- \cup _- $\quad: S e t \times S e t \rightarrow S e t ;$
$\forall e, e^{\prime}:$ Elem; $S, S^{\prime}: S e t$
- $\neg(e$ is_in empty)
- $e \operatorname{is_ in~} \operatorname{insert}\left(e^{\prime}, S\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.S\right)$
- $S=S^{\prime} \Leftrightarrow\left(\forall x:\right.$ Elem • x is_in $S \Leftrightarrow x$ is_in $\left.S^{\prime}\right)$ \%(equal_sets)\%
- e is_in $\left(S \cup S^{\prime}\right) \Leftrightarrow\left(e\right.$ is_in $S \vee e$ is_in $\left.S^{\prime}\right)$
- e is_in remove $\left(e^{\prime}, S\right) \Leftrightarrow\left(\neg\left(e=e^{\prime}\right) \wedge e\right.$ is_in $\left.S\right)$
then \%implies $\forall e, e^{\prime}:$ Elem; S : Set
- $\operatorname{insert}(e, \operatorname{insert}(e, S))=\operatorname{insert}(e, S)$
- $\operatorname{insert}\left(e, \operatorname{insert}\left(e^{\prime}, S\right)\right)=\operatorname{insert}\left(e^{\prime}, \operatorname{insert}(e, S)\right)$

op _- \cup _- $: S e t \times S e t \rightarrow$ Set, assoc, comm, idem, unit empty
end
> Generated types may need to be declared together.

```
sort Node
generated type Tree ::= mktree(Node; Forest)
generated type Forest ::= empty | add(Tree; Forest)
```

is both incorrect (linear visibility) and wrong (the corresponding semantics is not the "expected" one). One must write instead:
sort Node
generated types Tree $::=m k t r e e($ Node; Forest);

$$
\text { Forest }::=\text { empty } \mid \text { add (Tree } ; \text { Forest })
$$

Free Specifications

- Free specifications provide initial semantics and avoid the need for explicit negation.
spec NATURAL $=$ free type $N a t::=0 \mid \operatorname{suc}($ Nat $)$
- Free datatype declarations are particularly convenient for defining enumerated datatypes.
spec Color $=$
free type $R G B::=$ Red \mid Green \mid Blue
free type $C M Y K::=$ Cyan \mid Magenta \mid Yellow \mid Black
end
- Free specifications can also be used when the constructors are related by some axioms.
spec Integer $=$
free $\{$ type Int $::=0 \mid \operatorname{suc}($ Int $) \mid \operatorname{pre}($ Int $)$
$\forall x:$ Int - $\operatorname{suc}(\operatorname{pre}(x))=x$
- $\operatorname{pre}(\operatorname{suc}(x))=x\}$
end
> Predicates hold minimally in models of free specifications.
spec Natural_Order $=$
Natural
then free $\left\{\right.$ pred _- $_{--}: N a t \times N a t$
$\forall x, y: N a t$
- $0<\operatorname{suc}(x)$
- $x<y \Rightarrow \operatorname{suc}(x)<\operatorname{suc}(y)\}$
end
- Operations and predicates may be safely defined by induction on the constructors of a free datatype declaration.
spec Natural_Arithmetic $=$
Natural_Order
then ops $1: N a t=\operatorname{suc}(0)$;
_- + _- $: N a t \times N a t \rightarrow N a t, a s s o c, c o m m, u n i t ~ 0 ;$
_-* _- : Nat \times Nat \rightarrow Nat, assoc, comm, unit 1
$\forall x, y: N a t$
- $x+\operatorname{suc}(y)=\operatorname{suc}(x+y)$
- $x * 0=0$
- $x * \operatorname{suc}(y)=(x * y)+x$
end
> More care may be needed when defining operations or predicates on free datatypes when there are axioms relating the constructors.

```
spec Integer_Arithmetic \(=\)
    Integer
then ops \(1: \operatorname{Int}=\operatorname{suc}(0)\);
    _- + _- : Int \(\times\) Int \(\rightarrow\) Int, assoc, comm, unit 0 ;
    _- - _- : Int \(\times\) Int \(\rightarrow\) Int \(;\)
    _- * _- : Int \(\times\) Int \(\rightarrow\) Int, assoc, comm, unit 1
    \(\forall x, y:\) Int
    - \(x+\operatorname{suc}(y)=\operatorname{suc}(x+y)\)
    - \(x+\operatorname{pre}(y)=\operatorname{pre}(x+y)\)
    - \(x-0=x\)
    - \(x-\operatorname{suc}(y)=\operatorname{pre}(x-y)\)
    - \(x-\operatorname{pre}(y)=\operatorname{suc}(x-y)\)
    - \(x * 0=0\)
    - \(x * \operatorname{suc}(y)=(x * y)+x\)
    - \(x * \operatorname{pre}(y)=(x * y)-x\)
```

end
spec Integer_Arithmetic_Order =
Integer_Arithmetic

$\forall x, y$: Int

- $0 \leq 0$
- $\neg(0 \leq \operatorname{pre}(0))$
- $0 \leq x \Rightarrow 0 \leq \operatorname{suc}(x)$
- $\neg(0 \leq x) \Rightarrow \neg(0 \leq \operatorname{pre}(x))$
- $\operatorname{suc}(x) \leq y \Leftrightarrow x \leq \operatorname{pre}(y)$
- $\operatorname{pre}(x) \leq y \Leftrightarrow x \leq \operatorname{suc}(y)$
- $x \geq y \Leftrightarrow y \leq x$
- $x<y \Leftrightarrow(x \leq y \wedge \neg(x=y))$
- $x>y \Leftrightarrow y<x$
end
> Generic specifications often involve free extensions of (loose) parameters.
spec List [sort Elem] $=$ free type List $::=$ empty \mid cons(Elem; List)
spec SET [sort Elem] =
free $\{$ type Set $::=$ empty \mid insert (Elem; Set)
pred __is_in_- : Elem \times Set
$\forall e, e^{\prime}$: Elem; $S: S e t$
- $\operatorname{insert}(e, \operatorname{insert}(e, S))=\operatorname{insert}(e, S)$
- $\operatorname{insert}\left(e, \operatorname{insert}\left(e^{\prime}, S\right)\right)=\operatorname{insert}\left(e^{\prime}, \operatorname{insert}(e, S)\right)$
- $\neg(e$ is_in empty $)$
- e is_in insert (e, S)
- e is_in insert $\left(e^{\prime}, S\right)$ if e is_in $\left.S\right\}$
end
spec Transitive_Closure [sort Elem pred __ $R_{--}:$Elem \timesElem] $=$ free $\left\{\right.$ pred ${ }_{\text {_ }} R^{+}$_- : Elem \timesElem
$\forall x, y, z:$ Elem
- $x R y \Rightarrow x R^{+} y$
- $\left.x R^{+} y \wedge y R^{+} z \Rightarrow x R^{+} z\right\}$
$>$ Loose extensions of free specifications can avoid overspecification.
spec Natural_With_Bound =
Natural_Arithmetic
then op max_size : Nat
- $0<m a x _s i z e$
end
spec Set_Choose [sort Elem] =
SET [sort Elem]
then op choose : Set \rightarrow Elem
$\forall S: S e t ~ \bullet \neg(S=e m p t y) \Rightarrow$ choose (S) is_in S
end
> Datatypes with observer operations or predicates can be specified as generated instead of free.
spec Set_Generated [sort Elem] $=$ generated type Set $::=$ empty \mid insert(Elem; Set) pred __is_in_-: Elem \times Set
$\forall e, e^{\prime}:$ Elem; $S, S^{\prime}: S e t$
- $\neg(e$ is_in empty $)$
- e is_in $\operatorname{insert}\left(e^{\prime}, S\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.S\right)$
- $S=S^{\prime} \Leftrightarrow\left(\forall x:\right.$ Elem • x is_in $S \Leftrightarrow x$ is_in $\left.S^{\prime}\right)$
end
> The \%def annotation is useful to indicate that some operations or predicates are uniquely defined.
spec SEt_Union [sort Elem] =
SET [sort Elem]
then \%def
ops _- \cup _- $: S e t \times$ Set \rightarrow Set, assoc, comm, idem, unit empty; remove : Elem \times Set \rightarrow Set
$\forall e, e^{\prime}:$ Elem ; $S, S^{\prime}: S e t$
- $S \cup \operatorname{insert}\left(e^{\prime}, S^{\prime}\right)=\operatorname{insert}\left(e^{\prime}, S \cup S^{\prime}\right)$
- $\operatorname{remove}(e$, empty $)=$ empty
- $\operatorname{remove}(e, \operatorname{insert}(e, S))=\operatorname{remove}(e, S)$
- $\operatorname{remove}\left(e, \operatorname{insert}\left(e^{\prime}, S\right)\right)=\operatorname{insert}\left(e^{\prime}, \operatorname{remove}(e, S)\right)$ if $\neg\left(e=e^{\prime}\right)$
end
$>$ Operations can be defined by axioms involving observer operations, instead of inductively on constructors.
spec SEt_Union_1 [sort Elem] =
Set_GENERATED [sort Elem]
then \%def
ops _- \cup _- $: S e t \times$ Set \rightarrow Set, assoc, comm, idem, unit empty; remove : Elem \times Set \rightarrow Set
$\forall e, e^{\prime}:$ Elem; $S, S^{\prime}:$ Set
- e is_in $\left(S \cup S^{\prime}\right) \Leftrightarrow\left(e\right.$ is_in $S \vee e$ is_in $\left.S^{\prime}\right)$
- e is_in remove $\left(e^{\prime}, S\right) \Leftrightarrow\left(\neg\left(e=e^{\prime}\right) \wedge e\right.$ is_in $\left.S\right)$
end
> Sorts declared in free specifications are not necessarily generated by their constructors.
spec UnNATURAL $=$
free $\{$ type $U n N a t::=0 \mid \operatorname{suc}(U n N a t)$

$$
\begin{gathered}
\text { op } \quad-+_{--}: U n N a t \times U n N a t \rightarrow U n N a t, \\
\text { assoc, comm, unit } 0
\end{gathered}
$$

$\forall x, y: U n N a t ~ \bullet x+\operatorname{suc}(y)=\operatorname{suc}(x+y)$
$\forall x:$ UnNat • $\exists y:$ UnNat • $x+y=0\}$
end

Partial Functions

> Partial functions arise naturally.
> Partial functions are declared differently from total functions.
spec Set_Partial_Choose [sort Elem] = Generated_Set [sort Elem]
then op choose : Set \rightarrow ? Elem
end

- Terms containing partial functions may be undefined, i.e., they may fail to denote any value.
E.g., the (value of the) term choose (empty) may be undefined.
- Functions, even total ones, propagate undefinedness.

If the term $\operatorname{choose}(S)$ is undefined for some value of S, then the term insert (choose $\left.(S), S^{\prime}\right)$ is undefined as well for this value of S, although insert is a total function.
> Predicates do not hold on undefined arguments.

If the term $\operatorname{choose}(S)$ is undefined,
then the atomic formula choose (S) is_in S does not hold.

- Equations hold when both terms are undefined.

The ordinary equation:

$$
\operatorname{insert}(\operatorname{choose}(S), \operatorname{insert}(\operatorname{choose}(S), e m p t y))=\operatorname{insert}(\operatorname{choose}(S), e m p t y)
$$

holds also when the term choose (S) is undefined.
> Special care is needed in specifications involving partial functions.

- Asserting choose (S) is_in S as an axiom implies that choose (S) is defined, for any S.
- Asserting remove(choose $(S), \operatorname{insert}(\operatorname{choose}(S)$, empty $))=e m p t y$ as an axiom implies that choose (S) is defined for any S, since the term empty is always defined.
- Asserting $\operatorname{insert}(\operatorname{choose}(S), S)=S$ as an axiom implies that choose (S) is defined for any S, since a variable always denotes a defined value.
> The definedness of a term can be checked or asserted.
spec Set_Partial_Choose_1 [sort Elem] = SEt_Partial_Choose [sort Elem]
then • \neg def choose (empty)
$\forall S: S e t ~ \bullet d e f$ choose $(S) \Rightarrow$ choose (S) is_in S
end

We know that choose is undefined when applied to empty, but we don't know exactly when choose (S) is defined.
(It may be undefined on other values than empty.)

If we would have specified choose by:

$$
\forall S: S e t \bullet \neg(S=\text { empty }) \Rightarrow \text { choose }(S) \text { is_in } S
$$

then we could conclude that choose (S) is defined when S is not equal to empty, but nothing about the undefinedness of choose (empty).
> The domains of definition of partial functions can be specified exactly.
spec Set_Partial_Choose_2 [sort Elem] = SEt_Partial_Choose [sort Elem]
then $\forall S$: Set • def $\operatorname{choose}(S) \Leftrightarrow \neg(S=e m p t y)$
$\forall S: S e t \bullet d e f \operatorname{choose}(S) \Rightarrow \operatorname{choose}(S)$ is_in S
end

- Loosely specified domains of definition may be useful.
spec Natural_With_Bound_And_Addition $=$ Natural_With_Bound
then op _-+?_- : Nat $\times N a t \rightarrow$? Nat
$\forall x, y: N a t$
- def $(x+? y)$ if $x+y<$ max_size
$\%\{x+y<$ max_size implies both
$x<$ max_size and $y<$ max_size $\} \%$
- $\operatorname{def}(x+? y) \Rightarrow x+? y=x+y$
end
> Domains of definition can be specified more or less explicitly.
spec Set_Partial_Choose_3 [sort Elem] = Set_Partial_Choose [sort Elem]
then • \neg def choose (empty)
$\forall S: S e t ~ \bullet \neg(S=e m p t y) \Rightarrow$ choose (S) is_in S
end

We can conclude after some reasoning that:

$$
\operatorname{def} \operatorname{choose}(S) \Leftrightarrow \neg(S=\text { empty })
$$

but this is not so prominent.
spec Natural_Partial_Pre $=$
Natural_Arithmetic
then op pre: Nat \rightarrow ? Nat

- \neg def pre (0)
$\forall x: N a t \bullet \operatorname{pre}(\operatorname{suc}(x))=x$
end
is explicit enough.
spec Natural_Partial_Subtraction_1 =
NATURAL_Partial_Pre
then op _- - _- $N a t \times N a t \rightarrow$? Nat
$\forall x, y: N a t$
- $x-0=x$
- $x-\operatorname{suc}(y)=\operatorname{pre}(x-y)$
end
is correct, but clearly not explicit enough, and better specified as follows:
spec Natural_Partial_Subtraction $=$
NATURAL_PARTIAL_PRE
then op _- - _- $: N a t \times N a t \rightarrow$? Nat
$\forall x, y: N a t$
- $\operatorname{def}(x-y) \Leftrightarrow(y<x \vee y=x)$
- $x-0=x$
- $x-\operatorname{suc}(y)=\operatorname{pre}(x-y)$
end
- Partial functions are minimally defined by default in free specifications.
spec List_Selectors_1 [sort Elem] = List [sort Elem]
then free $\{$ ops head : List \rightarrow ? Elem;

$$
\text { tail }: \text { List } \rightarrow \text { ? List }
$$

$\forall e:$ Elem; L: List

- head $(\operatorname{cons}(e, L))=e$
- $\operatorname{tail}(\operatorname{cons}(e, L))=L\}$
end
spec List_Selectors_2 [sort Elem] $=$ List [sort Elem]
then ops head : List \rightarrow ? Elem;
tail : List \rightarrow ? List
$\forall e:$ Elem; L: List
- \neg def head (empty)
- ᄀdef tail(empty)
- head $(\operatorname{cons}(e, L))=e$
- $\operatorname{tail}(\operatorname{cons}(e, L))=L$
end
- Selectors can be specified concisely in datatype declarations, and are usually partial.
spec List_Selectors [sort Elem] $=$ free type List $::=$ empty \mid cons(head :? Elem; tail :? List)
spec NATURAL_SUc_Pre $=$ free type $N a t::=0 \mid \operatorname{suc}($ pre $: ? N a t)$
- Selectors are usually total when there is only one constructor.
spec Pair_1 [sorts Elem1, Elem2] =
free type Pair $::=$ pair(first : Elem1; second : Elem2)
> Constructors may be partial.
spec Part_Container [sort Elem] = generated type

$$
\text { P_Container }::=\text { empty } \mid \text { insert }(\text { Elem ; P_Container }) ?
$$

pred addable : Elem \times P_Container
vars $e, e^{\prime}:$ Elem; $C: P$ Container

- def $\operatorname{insert}(e, C) \Leftrightarrow$ addable (e, C)
pred __is_in_-: Elem \times P_Container
- $\neg(e$ is_in empty)
- (e is_in insert $\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.\left.C\right)\right)$ if addable $\left(e^{\prime}, C\right)$
end
- Existential equality requires the definedness of both terms as well as their equality.
spec Natural_Partial_Subtraction_2 = NATURAL_PARTIAL_SUBTRACTION_1
then $\forall x, y, z:$ Nat • $y-x \stackrel{e}{=} z-x \Rightarrow y=z$

$$
\begin{aligned}
& \text { \%\{ }\{y-x=z-x \Rightarrow y=z \text { would be wrong, } \\
& \quad \operatorname{def}(y-x) \wedge \operatorname{def}(z-x) \wedge y-x=z-x \Rightarrow y=z
\end{aligned}
$$

is correct, but better abbreviated in the above axiom $\} \%$
end

Subsorting

> Subsorts and supersorts are often useful in CASL specifications.
> Subsort declarations directly express relationships between carrier sets.
spec Generic_Monoid_1 [sort Elem] = sorts Elem < Monoid
ops 1 : Monoid;
_-* _- : Monoid \times Monoid \rightarrow Monoid, assoc, unit 1
end
> Operations declared on a sort are automatically inherited by its subsorts.

```
spec Vehicle =
    Natural
then sorts Car, Bicycle < Vehicle
    ops max_speed : Vehicle }->\mathrm{ Nat;
        weight : Vehicle }->\mathrm{ Nat;
        engine_capacity : Car }->\mathrm{ Nat
end
```

- Inheritance applies also for subsorts that are declared afterwards.
spec More_Vehicle $=$ Vehicle then sorts Boat $<$ Vehicle
> Subsort membership can be checked or asserted.
spec Speed_Regulation $=$
Vehicle
then ops speed_limit: Vehicle \rightarrow Nat;
car_speed_limit, bike_speed_limit : Nat
$\forall v$: Vehicle
- $v \in C a r \Rightarrow$ speed_limit $(v)=$ car_speed_limit
- $v \in$ Bicycle \Rightarrow speed_limit $(v)=$ bike_speed_limit
end
> Datatype declarations can involve subsort declarations.
sorts Car, Bicycle, Boat
type Vehicle $::=$ sort Car | sort Bicycle | sort Boat
is equivalent to the declaration sorts Car, Bicycle, Boat $<$ Vehicle, and leaves the way open to further kinds of vehicles (e.g., planes).
sorts Car, Bicycle, Boat
generated type Vehicle $::=$ sort Car | sort Bicycle | sort Boat
prevents the definition of further subsorts, e.g., for planes.
sorts Car, Bicycle, Boat
free type Vehicle $::=$ sort Car \mid sort Bicycle \mid sort Boat
prevents the definition of further subsorts, and moreover the definition of a common subsort of both Car and Boat (e.g., sorts Amphibious $<$ Car, Boat).
> Subsorts may also arise as classifications of previously specified values, and their values can be explicitly defined.
spec Natural_Subsorts $=$
Natural_Arithmetic
then pred even: Nat
- even(0)
- $\neg \operatorname{even}(1)$
$\forall n: N a t$ - $\operatorname{even}(\operatorname{suc}(\operatorname{suc}(n))) \Leftrightarrow \operatorname{even}(n)$
sort Even $=\{x:$ Nat • even $(x)\}$
sort Prime $=\{x:$ Nat • $1<x \wedge$

$$
\forall y, z: N a t \bullet x=y * z \Rightarrow y=1 \vee z=1\}
$$

end
spec Positive $=$
NATURAL_PARTIAL_PrE
then sort Pos $=\{x:$ Nat $\bullet \neg(x=0)\}$
> It may be useful to redeclare previously defined operations, using the new subsorts introduced.

$$
\begin{aligned}
& \text { spec Positive_Arithmetic }= \\
& \text { Positive } \\
& \text { then ops } 1 \text { : Pos; } \\
& \text { suc } \quad: N a t \rightarrow P o s ; \\
& \text { _- + _-, _- * _- : Pos } \times \text { Pos } \rightarrow \text { Pos; } \\
& \text { _- + _- : Pos } \times \text { Nat } \rightarrow \text { Pos; } \\
& \text { _- + _- : Nat } \times \text { Pos } \rightarrow \text { Pos }
\end{aligned}
$$

end

- A subsort may correspond to the definition domain of a partial function.
spec Positive_Pre =
Positive_Arithmetic
then op pre: Pos \rightarrow Nat
- Using subsorts may avoid the need for partial functions.

spec Natural_Positive_Arithmetic $=$

free types Nat $::=0 \mid$ sort Pos;

$$
\text { Pos }::=\operatorname{suc}(\text { pre }: N a t)
$$

ops 1: Pos $=\operatorname{suc}(0)$;
_- + _- : Nat \times Nat \rightarrow Nat, assoc, comm, unit 0;
_-* _- : Nat \times Nat \rightarrow Nat, assoc, comm, unit 1;
_- + _-, _- * _- : Pos \times Pos \rightarrow Pos;
_- + _- : Pos \times Nat \rightarrow Pos;
_- + _- : Nat \times Pos \rightarrow Pos
$\forall x, y: N a t$

- $x+\operatorname{suc}(y)=\operatorname{suc}(x+y)$
- $x * 0=0$
- $x * \operatorname{suc}(y)=x+(x * y)$
- Casting a term from a supersort to a subsort is explicit and the value of the cast may be undefined.

Casting a term t to a sort s is written t as s, and $\operatorname{def}(t a s s)$ is equivalent to $t \in s$.

- $\operatorname{pre}(\operatorname{pre}(\operatorname{suc}(1))$ as Pos $)$
- def $\operatorname{pre}(\operatorname{pre}(s u c(1))$ as Pos $)$
- $\neg \operatorname{def}(\operatorname{pre}(\operatorname{pre}(\operatorname{suc}(1))$ as Pos $)$ as Pos $)$
- Supersorts may be useful when generalizing previously specified sorts.
spec Integer_Arithmetic_1 =
Natural_Positive_Arithmetic
then free type Int $::=$ sort Nat $\mid-_{--}$(Pos)
ops __ + _- : Int \times Int \rightarrow Int, assoc, comm, unit 0 ;
_- - _- : Int \times Int \rightarrow Int $;$
_- * _- : Int \times Int \rightarrow Int, assoc, comm, unit 1
$\forall x:$ Int $; n:$ Nat; $p, q:$ Pos
- $\operatorname{suc}(n)+(-1)=n$
- $\operatorname{suc}(n)+(-\operatorname{suc}(q))=n+(-q)$
- $(-p)+(-q)=-(p+q)$
- $x-0=x$
- $x-p=x+(-p)$
- $x-(-q)=x+q$
- $0 *(-q)=0$
- $p *(-q)=-(p * q)$
- $(-p) *(-q)=p * q$
end
> Supersorts may also be used for extending the intended values by new values representing errors or exceptions.

```
spec Set_Error_Choose [sort Elem] =
    GENERATED_SET [sort Elem]
then sorts Elem \(<\) ElemError
    op choose : Set \(\rightarrow\) ElemError
    pred __is_in_- : ElemError \(\times\) Set
    \(\forall S: S e t \bullet \neg(S=\) empty \() \Rightarrow\) choose \((S) \in\) Elem \(\wedge\) choose \((S)\) is_in \(S\)
end
```

spec SEt_Error_Choose_1 [sort Elem] =
Generated_Set [sort Elem]
then sorts Elem $<$ ElemError
op choose : Set \rightarrow ElemError
$\forall S:$ Set $\bullet \neg(S=$ empty $) \Rightarrow($ choose (S) as Elem $)$ is_in S
end

Structuring Specifications

> Large and complex specifications are easily built out of simpler ones by means of (a small number of) specification-building operations.
> Union and extension can be used to structure specifications.
spec List_Set [sort Elem] =
List_SELECTORS [sort Elem]
and Generated_Set [sort Elem]
then op elements_of _- : List \rightarrow Set
$\forall e:$ Elem; L: List

- elements_of empty = empty
- elements_of cons $(e, L)=\{e\} \cup$ elements_of L
end
> Specifications may combine parts with loose, generated, and free interpretations.

```
spec List_Choose [sort Elem] =
    LIST_SELECTORS [sort Elem]
and SET_PARTIAL_Choose_2 [sort Elem]
then ops elements_of _- : List \(\rightarrow\) Set;
            choose : List \(\rightarrow\) ? Elem
    \(\forall e:\) Elem; L: List
    - elements_of empty = empty
    - elements_of cons \((e, L)=\{e\} \cup\) elements_of \(L\)
    - def \(\operatorname{choose}(L) \Leftrightarrow \neg(L=\) empty \()\)
    - choose \((L)=\) choose(elements_of \(L)\)
end
```

spec Set_To_List [sort Elem] = List_SET [sort Elem]
then op list_of_- : Set \rightarrow List
$\forall S:$ Set • elements_of $($ list_of $S)=S$
end
> Renaming may be used to avoid unintended name clashes, or to adjust names of sorts and change notations for operations and predicates.
spec Stack [sort Elem] =
List_SELECTORS [sort Elem] with sort List \mapsto Stack,

$$
\begin{aligned}
\text { ops } \text { cons } & \mapsto \text { push__onto }_{--}, \\
\text {head } & \mapsto \text { top }, \\
\text { tail } & \mapsto \text { pop }
\end{aligned}
$$

end

- When combining specifications, origins of symbols can be indicated.
spec List_Set_1 [sort Elem] =
List_SELECTORS [sort Elem] with empty, cons
and GENERATED_SET [sort Elem] with empty, \{ _-\}, _- $\cup_{~--~}^{\text {a }}$
then op elements_of _- : List \rightarrow Set
$\forall e:$ Elem; L: List
- elements_of empty = empty
- elements_of cons $(e, L)=\{e\} \cup$ elements_of L
end
- Auxiliary symbols used in structured specifications can be hidden.
spec Natural_Partial_Subtraction_3 =
NATURAL_PARTIAL_SUBTRACTION_1 hide suc, pre
end
spec Natural_Partial_Subtraction_4 =
NATURAL_PARTIAL_SUBTRACTION_1 reveal $N a t, 0,1,{ }_{--}+_{--},-_{--},{ }_{--} *_{--},<_{--}$
end
spec PARTIAL_ORDER_2 = PARTIAL_ORDER reveal pred _- \leq
- Auxiliary symbols can be made local when they do not need to be exported.
spec List_Order [Total_Order with sort Elem, pred __ < _-] = List_SELECTORS [sort Elem]
then local op insert : Elem \times List \rightarrow List
$\forall e, e^{\prime}$: Elem; L : List
- $\operatorname{insert}(e$, empty $)=\operatorname{cons}(e, e m p t y)$
- $\operatorname{insert}\left(e, \operatorname{cons}\left(e^{\prime}, L\right)\right)=\operatorname{cons}\left(e^{\prime}, \operatorname{insert}(e, L)\right)$ when $e^{\prime}<e$ else cons $\left(e, \operatorname{cons}\left(e^{\prime}, L\right)\right)$
within op order : List \rightarrow List
$\forall e:$ Elem; L: List
- order $($ empty $)=$ empty
- $\operatorname{order}(\operatorname{cons}(e, L))=\operatorname{insert}(e, \operatorname{order}(L))$
end
spec List_Order_Sorted
[TOTAL_OrDER with sort Elem, pred __ < _-] = LIST_SELECTORS [sort Elem]
then local pred __is_sorted: List
$\forall e, e^{\prime}$: Elem; L: List
- empty is_sorted
- cons(e, empty) is_sorted
- cons $\left(e\right.$, cons $\left.\left(e^{\prime}, L\right)\right)$ is_sorted \Leftrightarrow

$$
\operatorname{cons}\left(e^{\prime}, L\right) \text { is_sorted } \wedge \neg\left(e^{\prime}<e\right)
$$

within op order : List \rightarrow List
$\forall L:$ List • order (L) is_sorted
end

- Care is needed with local sort declarations.

spec Wrong_List_Order_Sorted

[TOTAL_OrDER with sort Elem, pred _- < _-] = LIST_SELECTORS [sort Elem]
then local pred __is_sorted : List
sort SortedList $=\{L:$ List $\bullet L$ is_sorted $\}$
$\forall e, e^{\prime}:$ Elem; L: List

- empty is_sorted
- cons(e, empty) is_sorted
- cons $\left(e\right.$, cons $\left.\left(e^{\prime}, L\right)\right)$ is_sorted \Leftrightarrow

$$
\operatorname{cons}\left(e^{\prime}, L\right) \text { is_sorted } \wedge \neg\left(e^{\prime}<e\right)
$$

within op order : List \rightarrow SortedList
end

spec List_Order_Sorted_2

[TOTAL_OrDER with sort Elem, pred _- < _-] = List_Selectors [sort Elem]
then local pred __is_sorted: List
$\forall e, e^{\prime}:$ Elem; L : List

- empty is_sorted
- cons (e, empty) is_sorted
- cons $\left(e\right.$, cons $\left.\left(e^{\prime}, L\right)\right)$ is_sorted \Leftrightarrow

$$
\text { cons }\left(e^{\prime}, L\right) \text { is_sorted } \wedge \neg\left(e^{\prime}<e\right)
$$

within sort SortedList $=\{L:$ List • L is_sorted $\}$ op order : List \rightarrow SortedList
end

spec List_Order_Sorted_3

[TOTAL_OrDER with sort Elem, pred __ < _-] =
LIST_SELECTORS [sort Elem]
then $\{\quad$ pred __is_sorted : List
$\forall e, e^{\prime}$: Elem; L : List

- empty is_sorted
- cons (e, empty) is_sorted
- cons $\left(e\right.$, cons $\left.\left(e^{\prime}, L\right)\right)$ is_sorted \Leftrightarrow

$$
\operatorname{cons}\left(e^{\prime}, L\right) \text { is_sorted } \wedge \neg\left(e^{\prime}<e\right)
$$

then sort SortedList $=\{L:$ List • Lis_sorted $\}$ op order : List \rightarrow SortedList
\} hide _-is_sorted
end
> Naming a specification allows its reuse.

It is in general advisable to define as many named specifications as felt appropriate, since this improves the reusability of specifications: a named specification can easily be reused by referring to its name.

Generic Specifications

> Making a specification generic (when appropriate) improves its reusability.
> Parameters are arbitrary specifications.
spec GEneric_Monoid [sort Elem] $=\ldots$
spec List_Selectors [sort Elem] $=\ldots$
spec List_Order [Total_Order with sort Elem, pred __ $<_{\text {_- }}$] $=\ldots$
> The argument specification of an instantiation must provide symbols corresponding to those required by the parameter.
spec List_Order_Nat $=$ LIST_ORDER [[ATURAL_ORDER]
> The argument specification of an instantiation must ensure that the properties required by the parameter hold.
spec Nat_Word $=$ GENERIC_MONOID [$N A T U R A L$]
spec List_Order_Nat $=$ List_Order [[NATURAL_Order]

The definition of NAT_WORD abbreviates:
NATURAL and $\{$ NON_GENERIC_MONOID with $E l e m \mapsto N a t$ \}.

- When convenient, an instantiation can be completed by a renaming.
spec NAT_Word_1 =
GENERIC_Monoid [NATURAL] with Monoid \mapsto Nat_Word
end
> There must be no shared symbols between the argument specification and the body of the instantiated generic specification.
spec This_Is_Wrong $=$ GENERIC_MONOID [MONOID]

The above instantiation is ill-formed since the sort Monoid and the operation symbols ' 1 ' and ' $*$ ' are shared between the body of the generic specification GENERIC_MONOID and the argument specification MONOID.
> In instantiations, the fitting of parameter symbols to identical argument symbols can be left implicit.
spec Generic_Commutative_Monoid [sort Elem] = GEnERIC_Monoid [sort Elem]
then ...
> The fitting of parameter sorts to unique argument sorts can also be left implicit.
> Fitting of operation and predicate symbols can sometimes be left implicit too, and can imply fitting of sorts.
spec List_Order_Positive $=$ List_Order [Positive]
> The intended fitting of the parameter symbols to the argument symbols may have to be specified explicitly.
spec NAT_WORD_2 =
GENERIC_MONOID [NATURAL_SUBSORTS fit Elem \mapsto Nat]

- A generic specification may have more than one parameter.
spec Pair [sort Elem1] [sort Elem2] = free type Pair $::=$ pair (first : Elem1; second : Elem2)
spec TABLE [sort Key][sort Val] $=\ldots$

Note that writing:
spec Homogeneous_Pair_1 [sort Elem] [sort Elem] = free type Pair $::=$ pair (first : Elem; second : Elem)
merely defines pairs of values of the same sort, and HOMOGENEOUS_PAIR_1 is (equivalent to and) better defined as follows:
spec Homogeneous_Pair [sort Elem] =
free type Pair ::= pair(first:Elem; second:Elem)
> Instantiation of generic specifications with several parameters is similar to the case of just one parameter.
spec Pair_Natural_Color $=$ Pair [Natural_Arithmetic] [Color fit Elem2 $\mapsto R G B$]

Using the specification PAIR_1 (similar to PAIR, but with one single parameter introducing two sorts Elem1 and Elem2), would require us to write:
spec Pair_Natural_Color_1 =
Pair_1 [NATURAL_Arithmetic and Color
fit Elem1 \mapsto Nat, Elem2 $\mapsto R G B]$

- When parameters are trivial, one can always avoid explicit fitting maps.
spec Pair_Natural_Color_2 =
PAIR [sort Nat] [sort RGB]
and Natural_Arithmetic and Color

Compare for instance:
spec Pair_Pos =
Homogeneous_Pair [sort Pos] and Integer_Arithmetic_1
with:
spec Pair_Pos_1 =
Homogeneous_Pair [Integer_Arithmetic_1 fit Elem \mapsto Pos]
Note that the instantiation:
Homogeneous_Pair_1 [NATURAL] [Color fit Elem $\mapsto R G B$]
is ill-formed, since it entails mapping the sort Elem to both Nat and $R G B$.
> It is easy to specialize a generic specification with several parameters using a "partial instantiation".
spec My_Table [sort Val] =
TABLE [NATURAL_ARITHMETIC][sort Val]
> Composition of generic specifications is expressed using instantiation.
spec SET_OF_List [sort Elem] =
Generated_Set [List_Selectors [sort Elem] fit Elem \mapsto List]

Note especially that the following specification:
spec Mistake [sort Elem] = Generated_Set [List_Selectors [sort Elem]]
does not provide sets of lists of elements.
spec SET_AND_List [sort Elem] = Generated_Set [sort Elem] and List_Selectors [sort Elem]

It may be worth mentioning that the following composition of generic specifications is ill-formed:
spec This_Is_Still_Wrong $=$
Generic_Monoid [Generic_Monoid [sort Elem]

$$
\text { fit Elem } \mapsto \text { Monoid }]
$$

- Compound sorts introduced by a generic specification get automatically renamed on instantiation, which avoids name clashes.
spec List_Rev [sort Elem] $=$
free type $\operatorname{List}[$ Elem $]::=$ empty \mid
cons(head :? Elem; tail :? List[Elem])
ops _- $_{+}^{+}$_- $: \operatorname{List}[$ Elem $] \times \operatorname{List}[$ Elem $] \rightarrow \operatorname{List}[$ Elem $]$, assoc, unit empty;
reverse : List $[$ Elem $] \rightarrow$ List $[$ Elem $]$
$\forall e:$ Elem; L, L1, L2 : List [Elem]
- $\operatorname{cons}(e, L 1)++L 2=\operatorname{cons}(e, L 1++L 2)$
- reverse $($ empty $)=$ empty
- $\operatorname{reverse}(\operatorname{cons}(e, L))=\operatorname{reverse}(L)++\operatorname{cons}(e$, empty $)$
end
spec List_REV_Nat $=$ List_REV [NATURAL]

```
spec Two_Lists =
    LIST_REV [NATURAL] %% Provides the sort List[Nat]
and LIST_REV [COLOR fit Elem\mapstoRGB] %% Provides the sort List[RGB]
```

spec Two_Lists_1 =
List_Rev [Integer_Arithmetic_1 fit Elem \mapsto Nat]
and List_Rev [Integer_Arithmetic_1 fit Elem \mapsto Int]
Remember that $N a t<$ Int does not entail $\operatorname{List}[$ Nat $]<\operatorname{List}[$ Int $]$.
spec Monoid_C [sort Elem] = sort Monoid[Elem]
ops inj $:$ Elem \rightarrow Monoid $[$ Elem $]$;
1 : Monoid[Elem];
_- * _- : Monoid $[$ Elem $] \times$ Monoid $[$ Elem $] \rightarrow$ Monoid $[$ Elem $]$,
assoc, unit 1
$\forall x, y: \operatorname{Elem} \bullet \operatorname{inj}(x)=\operatorname{inj}(y) \Rightarrow x=y$
end
spec Monoid_of_Monoid [sort Elem] = Monoid_C [Monoid_C [sort Elem] fit Elem \mapsto Monoid[Elem]]

- Compound symbols can also be used for operations and predicates.
spec List_REv_Order [Total_Order] $=$
List_REV [sort Elem]
then local op insert: Elem \times List $[$ Elem $] \rightarrow$ List $[$ Elem $]$
$\forall e, e^{\prime}:$ Elem; L : List [Elem]
- $\operatorname{insert}(e$, empty $)=\operatorname{cons}(e$, empty $)$
- $\operatorname{insert}\left(e, \operatorname{cons}\left(e^{\prime}, L\right)\right)=\operatorname{cons}\left(e^{\prime}, \operatorname{insert}(e, L)\right)$ when $e^{\prime}<e$ else cons $\left(e, \operatorname{cons}\left(e^{\prime}, L\right)\right)$
within op order $\left[-<_{--}\right]: \operatorname{List}[E l e m] \rightarrow \operatorname{List}[E l e m]$
$\forall e:$ Elem; L : List[Elem]
- order[_- < _-] $($ empty $)=$ empty
- $\operatorname{order}[\ldots<\ldots](\operatorname{cons}(e, L))=\operatorname{insert}\left(e, \operatorname{order}\left[-<_{\ldots}\right](L)\right)$
end

```
spec List_Rev_with_Two_Orders =
    LIST_REV_ORDER
    [INTEGER_ARITHMETIC_ORDER fit Elem \(\mapsto\) Int, __ < _- \(\left.\mapsto ~ \_-<~<-\right]\)
    \%\% Provides the sort List[Int] and the operation order[-- < _-]
and List_REV_Order
    [INTEGER_ARITHMETIC_ORDER fit Elem \(\mapsto\) Int, _- < _- \(\mapsto ~ ~_{--}>\)_- \(^{\text {] }}\)
    \%\% Provides the sort List[Int] and the operation order[-- > --]
then \%implies
    \(\forall L: \operatorname{List}[\) Int \(] ~ \bullet \operatorname{order}\left[--<ـ_{-}\right](L)=\operatorname{reverse}\left(\operatorname{order}\left[ـ_{--}>{ }_{--}\right](L)\right)\)
end
```

> Parameters should be distinguished from references to fixed specifications that are not intended to be instantiated.
spec List_Weighted_Elem [sort Elem op weight $:$ Elem \rightarrow Nat] given NATURAL_ARITHMETIC $=$
List_REV [sort Elem]
then op weight : List $[$ Elem $] \rightarrow$ Nat
$\forall e:$ Elem; L : List[Elem]

- weight $($ empty $)=0$
- weight $(\operatorname{cons}(e, L))=w e i g h t(e)+\operatorname{weight}(L)$
end

One could have written instead:
spec List_Weighted_Elem
[NATURAL_ARITHMETIC then sort Elem op weight : Elem \rightarrow Nat] $=\ldots$
but the latter, which is correct, misses the essential distinction between the part which is intended to be specialized and the part which is 'fixed' (since, by definition, the parameter is the part which has to be specialized).

Note also that omitting the 'given NATURAL_ARITHMETIC' clause would make the declaration:
spec List_Weighted_Elem [sort Elem op weight : Elem \rightarrow Nat] $=\ldots$
ill-formed, since the sort $N a t$ is not available.
> Argument specifications are always implicitly regarded as extension of the imports.
spec List_Weighted_Pair_Natural_Color =
List_Weighted_Elem [PAIR_NATURAL_Color fit Elem \mapsto Pair, weight \mapsto first $]$
spec List_Weighted_Instantiated $=$ List_Weighted_Elem [sort Value op weight : Value \rightarrow Nat]

- Imports are also useful to prevent ill-formed instantiations.
spec List_Length [sort Elem] given NATURAL_Arithmetic $=$ List_REV [sort Elem]
then op length : List $[$ Elem $] \rightarrow$ Nat
$\forall e:$ Elem; L: List[Elem]
- length $($ empty $)=0$
- length $(\operatorname{cons}(e, L))=\operatorname{length}(L)+1$
then \%implies
$\forall L: \operatorname{List}[E l e m]$ - length $(\operatorname{reverse}(L))=\operatorname{length}(L)$
end
spec List_Length_Natural =
List_LENGTH [NATURAL_ARITHMETIC]
spec Wrong_List_Length [sort Elem] = Natural_Arithmetic and List_Rev [sort Elem]
then ...
end

The specification Wrong_List_Length is fine as long as one does not need to instantiate it with NATURAL_ARITHMETIC as argument specification.

The instantiation Wrong_List_Length [Natural_Arithmetic] is ill-formed since some symbols of the argument specification are shared with some symbols of the body (and not already occurring in the parameter) of the instantiated generic specification, which is wrong. Of course the same problem will occur with any argument specification which provides, e.g., the sort Nat.

- In generic specifications, auxiliary required specifications should be imported rather than extended.

Since an instantiation is ill-formed as soon as there are some shared symbols between the argument specification and the body of the generic specification, when designing a generic specification, it is generally advisable to turn auxiliary required specifications into imports, and generic specifications of the form:

$$
F[X]=S P \text { then } \ldots
$$

are better written

$$
F[X] \text { given } S P=\ldots
$$

to allow the instantiation $F[S P]$.
> Views are named fitting maps, and can be defined along with specifications.
view Integer_As_Total_Order:
TOTAL_ORDER to INTEGER_ARITHMETIC_ORDER $=$
Elem \mapsto Int, _- $<$ _- $\mapsto ~--<-$
view Integer_as_Reverse_Total_Order :
Total_Order to Integer_Arithmetic_Order =
Elem \mapsto Int, _- < _- $\mapsto ~-->~--$
spec List_Rev_with_Two_Orders_1 =
List_Rev_Order [view Integer_As_Total_Order]
and List_Rev_Order [view Integer_As_Reverse_Total_Order]
then \%implies

end
> Views can also be generic.
view List_As_Monoid [sort Elem]:
Monoid to List_Rev [sort Elem] =
Monoid \mapsto List $\left[\right.$ Elem], $1 \mapsto$ empty, _- * _- $\mapsto ~ \ldots-++_{-}$

Specifying the Architecture of Implementations

- Architectural specifications impose structure on implementations, whereas specification-building operations only structure the text of specifications.
- The examples in this chapter are artificially simple.
spec Color $=\ldots$
spec Natural_Order $=\ldots$
spec Natural_Arithmetic $=\ldots$
spec Elem = sort Elem
spec Cont [ELEM] $=$
generated type Cont $[$ Elem $]::=$ empty $\mid \operatorname{insert}($ Elem; Cont $[$ Elem $])$
preds __is_empty : Cont $[$ Elem $]$;
_-is_in__: Elem \times Cont $[$ Elem $]$
ops choose : Cont $[$ Elem $] \rightarrow$? Elem;
delete : Elem $\times \operatorname{Cont}[$ Elem $] \rightarrow$ Cont $[$ Elem $]$
$\forall e, e^{\prime}:$ Elem; C : Cont [Elem]
- empty is_empty
- $ᄀ \operatorname{insert}(e, C) i s _e m p t y$
- $\neg e$ is_in empty
- e is_in $\operatorname{insert}\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e\right.$ is_in $\left.C\right)$
- def choose $(C) \Leftrightarrow \neg C$ is_empty
- def choose $(C) \Rightarrow$ choose (C) is_in C
- e is_in delete $\left(e^{\prime}, C\right) \Leftrightarrow\left(e\right.$ is_in $\left.C \wedge \neg\left(e=e^{\prime}\right)\right)$
end
spec Cont_Diff [ElEM] $=$ Cont [ElEm]
then op diff : Cont $[$ Elem $] \times \operatorname{Cont}[E l e m] \rightarrow \operatorname{Cont}[E l e m]$
$\forall e: E l e m ; ~ C, C^{\prime}: \operatorname{Cont}[E l e m]$
- $e \operatorname{is_ indiff}\left(C, C^{\prime}\right) \Leftrightarrow\left(e\right.$ is_in $C \wedge \neg\left(e\right.$ is_in $\left.\left.C^{\prime}\right)\right)$
end
spec REQ $=$ CONT_DIFF [NATURAL_ORDER]
spec Flat_Req $=$
free type Nat $::=0 \mid \operatorname{suc}(N a t)$ pred _- < _- : Nat $\times N a t$
generated type Cont $[$ Nat $]::=$ empty $\mid \operatorname{insert}(N a t ; \operatorname{Cont}[N a t])$
preds _-is_empty : Cont [Nat];
-_is_in_-- : Nat \times Cont [Nat]
ops choose : $\operatorname{Cont}[$ Nat $] \rightarrow$? Nat;
delete : Nat $\times \operatorname{Cont}[$ Nat $] \rightarrow \operatorname{Cont}[N a t]$;
diff : Cont $[$ Nat $] \times$ Cont $[$ Nat $] \rightarrow \operatorname{Cont}[$ Nat $]$
$\forall e, e^{\prime}: N a t ; C, C^{\prime}: \operatorname{Cont}[N a t]$
- $0<\operatorname{suc}(e)$
- $\neg(e<0)$
- $\operatorname{suc}(e)<\operatorname{suc}\left(e^{\prime}\right) \Leftrightarrow e<e^{\prime}$
- empty is_empty
- $ᄀ \operatorname{insert}(e, C) i s _e m p t y$
- $ᄀ$ e is_in empty
- e is_in insert $\left(e^{\prime}, C\right) \Leftrightarrow\left(e=e^{\prime} \vee e i s _i n C\right)$
- def choose $(C) \Leftrightarrow \neg C$ is_empty
- def choose $(C) \Rightarrow$ choose (C) is_in C
- e is_in delete $\left(e^{\prime}, C\right) \Leftrightarrow\left(e\right.$ is_in $\left.C \wedge \neg\left(e=e^{\prime}\right)\right)$
- e is_indiff $\left(C, C^{\prime}\right) \Leftrightarrow\left(e\right.$ is_in $C \wedge \neg\left(e\right.$ is_in $\left.\left.C^{\prime}\right)\right)$
end
> An architectural specification consists of a list of unit declarations, specifying the required components, and a result part, indicating how they are to be combined.
arch spec SYSTEM $=$
units N : NATURAL_ORDER;
C : CONT [NATURAL_ORDER] given N;
D : Cont_Diff [NATURAL_ORDER] given C
result D
- There can be several distinct architectural choices for the same requirements specification.
arch spec SYSTEM_1 =
units N : NATURAL_ORDER;
$C D$: CONT_DifF [NATURAL_ORDER] given N
result $C D$
- Each unit declaration listed in an architectural specification corresponds to a separate implementation task.

In the architectural specification SYSTEM, the task of providing a component D expanding C and implementing CONT_DIFF [NATURAL_ORDER] is independent from the tasks of providing implementations N of NATURAL_ORDER and C of Cont [NATURAL_ORDER] given N.

Hence, when providing the component D, one cannot make any further assumption on how the component C is (or will be) implemented, besides what is expressly ensured by its specification.

Thus the component D should expand any given implementation C of CONT [NATURAL_ORDER] and provide an implementation of CONT_DIFF [NATURAL_ORDER], which is tantamount to providing a generic implementation G of CONT_DIFF [NATURAL_ORDER] which takes the particular implementation of CONT [NATURAL_ORDER] as a parameter to be expanded. Then we obtain D by simply applying G to C.

Genericity here arises from the independence of the developments of C and D, rather than from the desire to build multiple implementations of Cont_Diff [NATURAL_Order] using different implementations of Cont [Natural_Order].

- A unit can be implemented only if its specification is a conservative extension of the specifications of its given units.

For instance, the component D can exist only if the specification CONT_DIFF [NATURAL_ORDER] is a conservative extension of Cont [NATURAL_ORDER].
spec Cont_Diff_1 =
Cont [Natural_Order]
then op diff: Cont $[$ Nat $] \times \operatorname{Cont}[$ Nat $] \rightarrow \operatorname{Cont}[$ Nat $]$
$\forall x, y: N a t ; C, C^{\prime}: \operatorname{Cont}[N a t]$

- $\operatorname{diff}(C$, empty $)=C$
- $\operatorname{diff}\left(\right.$ empty,$\left.C^{\prime}\right)=$ empty
- diff $\left(\operatorname{insert}(x, C), \operatorname{insert}\left(y, C^{\prime}\right)\right)=$ $\operatorname{insert}\left(x, \operatorname{diff}\left(C, \operatorname{insert}\left(y, C^{\prime}\right)\right)\right)$ when $x<y$
else diff $\left(C, C^{\prime}\right)$ when $x=y$
else diff $\left(\operatorname{insert}(x, C), C^{\prime}\right)$
- x is_in $\operatorname{diff}\left(C, C^{\prime}\right) \Leftrightarrow\left(x\right.$ is_in $C \wedge \neg\left(x\right.$ is_in $\left.\left.C^{\prime}\right)\right)$
end
arch spec Inconsistent $=$
units N : NATURAL_ORDER;
C : Cont [NATURAL_Order] given N;
D : Cont_Diff_1 given C
result D
- Genericity of components can be made explicit in architectural specifications.
arch spec System_G $=$
units N : NATURAL_ORDER;
$F:$ NATURAL_ORDER \rightarrow CONT [NATURAL_ORDER];
$G:$ Cont [NATURAL_Order] \rightarrow CONT_Diff [NATURAL_Order]
result $G[F[N]]$
> A generic component may be applied to an argument richer than required by its specification.
arch spec System_A =
units $N A$: NATURAL_ARITHMETIC;
F : Natural_Order \rightarrow Cont [Natural_Order];
G : CONT [NATURAL_ORDER] \rightarrow CONT_DIFF [NATURAL_ORDER]
result $G[F[N A]]$
- Specifications of components can be named for further reuse.
unit spec Cont_Comp $=$ ELEM \rightarrow CONT [ELEM]
unit spec Diff_Comp $=$ Cont $[$ Elem $] \rightarrow$ Cont_Diff [ElEm $]$
arch spec SYSTEM_G1 =
units N : NATURAL_ORDER;
F : CONT_COMP;
G : DIFF_ComP
result $G[F[N]]$
> Both named and un-named specifications can be used to specify components.
unit spec Diff_Comp_1 =
Cont $[$ Elem $] \rightarrow\{$ op diff $: \operatorname{Cont}[$ Elem $] \times$ Cont $[$ Elem $] \rightarrow$ Cont $[$ Elem $]$
$\forall e:$ Elem; $C, C^{\prime}: \operatorname{Cont}[$ Elem $]$
- e is_indiff $\left(C, C^{\prime}\right) \Leftrightarrow$
$\left(e\right.$ is_in $C \wedge \neg\left(e\right.$ is_in $\left.\left.\left.C^{\prime}\right)\right)\right\}$
- Specifications of generic components should not be confused with generic specifications.
- Generic specifications naturally give rise to specifications of generic components, which can be named for later reuse, as illustrated above by CONT_COMP.
- A generic specification is nothing other than a piece of specification that can easily be adapted by instantiation.
- A specification of a generic component cannot be instantiated, it is the specified generic component which gets applied to suitable components.
- A generic component may be applied more than once in the same architectural specification.
arch spec OTHER_SYSTEM $=$
units N : NATURAL_ORDER;
C : COLOR;
F : CONT_COMP
result $F[N]$ and $F[C$ fit Elem $\mapsto R G B]$
> Several applications of the same generic component is different from applications of several generic components with similar specifications.

```
arch spec OTHER_SYSTEM_1 =
units N : NATURAL_ORDER;
    C : COLOR;
    FN : NATURAL_OrdER }->\mathrm{ CONT [NATURAL_OrdER];
    FC: COLOR }->\mathrm{ CONT [Color fit Elem}\mapstoRGB
result FN[N] and FC[C]
```

- Generic components may have more than one argument.
unit spec SET_Comp $=$ ElEm \rightarrow GENERATED_SET [ELEM]
spec Cont2Set [Elem] $=$
Cont [Elem] and Generated_Set [Elem]
then op elements_of \quad : Cont $[$ Elem $] \rightarrow$ Set
$\forall e:$ Elem; C : Cont[Elem]
- elements_of empty = empty
- elements_of insert $(e, C)=\{e\} \cup$ elements_of C
end
arch spec Arch_Cont2SET_NAT =
units N : NATURAL_ORDER;
C : CONT_COMP;
S : SET_COMP;
$F:$ Cont [Elem] \times GEnErated_Set [Elem] \rightarrow Cont2Set [Elem]
result $F[C[N]][S[N]]$
> Open systems can be described by architectural specifications using generic unit expressions in the result part.

```
arch spec ARCH_CONT2SET =
units C : CONT_ComP;
    S : SET_COMP;
    F : Cont [Elem] × Generated_Set [Elem] }->\mathrm{ Cont2Set [Elem]
result \lambda X: ElEm \bullet F [C[X]][S[X]]
arch spec Arch_Cont2SEt_Used =
units N : NATURAL_ORDER;
    CSF : arch spec ARCH_CONT2SET
result CSF [N]
```

> When components are to be combined, it is best to check that any shared symbol originates from the same non-generic component.
arch spec Arch_Cont2SET_NAt_1 =
units N : NATURAL_ORDER;
C : CONT_COMP;
S : SET_COMP;
$G:\{$ Cont [Elem] and Generated_Set [Elem] $\}$
\rightarrow Cont2SET [Elem]
result $G[C[N]$ and $S[N]$ fit $\operatorname{Cont}[E l e m] \mapsto \operatorname{Cont}[N a t]]$
arch spec Wrong_Arch_Spec =
units $C N$: CONT [NATURAL_ORDER];
SN : GENERATED_SET [NATURAL_OrdER];
$F \quad:$ Cont [Elem] \times Generated_Set [Elem] \rightarrow Cont2Set [Elem]
result $F[C N][S N]$
arch spec Badly_Structured_Arch_Spec =
units N : NATURAL_ORDER;
$A:$ NATURAL_ORDER \rightarrow NATURAL_ARITHMETIC;
C : Cont_Comp;
S : SET_COMP;
$F:$ Cont [Elem] \times Generated_Set [Elem] \rightarrow Cont2Set [Elem]
result $F[C[A[N]]][S[A[N]]]$

- Auxiliary unit definitions or local unit definitions may be used to avoid repetition of generic unit applications.
arch spec Well_Structured_Arch_Spec $=$
units N : NATURAL_ORDER;
A : NATURAL_ORDER \rightarrow NATURAL_ARITHMETIC;
$A N=A[N] ;$
C : CONT_COMP;
S : SET_COMP;
$F \quad:$ Cont [ElEm] \times GEnERATED_SEt [ElEm] \rightarrow CONT2SEt [Elem]
result $F[C[A N]][S[A N]]$
arch spec Another_Well_Structured_Arch_Spec $=$
units N : NATURAL_ORDER;
A : NATURAL_ORDER \rightarrow NATURAL_ARITHMETIC;
C : CONT_COMP;
S : SET_Comp;
$F:$ Cont [Elem] \times GEnerated_Set [Elem] \rightarrow Cont2Set [Elem]
result local $A N=A[N]$ within $F[C[A N]][S[A N]]$

Libraries

- Libraries are named collections of named specifications.

```
> Local libraries are self-contained.
```

A library is called local when it is self-contained, i.e., for each reference to a specification name in the library, the library includes a specification with that name.
> Distributed libraries support reuse.

Distributed libraries allow duplication of specifications to be avoided altogether.

Instead of making an explicit copy of a named specification from one library for use in another, the second library merely indicates that the specification concerned can be downloaded from the first one.
> Different versions of the same library are distinguished by hierarchical version numbers.

- Local libraries are self-contained collections of specifications.
library UserManual/Examples
spec NATURAL $=\ldots$
spec Natural_Order $=$ Natural then ...
> Specifications can refer to previous items in the same library.
library Usermanual/Examples
spec Strict_Partial_Order $=\ldots$
spec Total_Order $=$ Strict_Partial_Order then \ldots
spec Partial_Order $=$ Strict_Partial_Order then \ldots
- All kinds of named specifications can be included in libraries.
library Usermanual/Examples
spec Strict_Partial_Order $=\ldots$
spec Generic_Monoid [sort Elem] $=\ldots$
view Integer_As_Total_Order: ...
view List_AS_Monoid [sort Elem]: ...
arch spec $\operatorname{SYSTEM}=\ldots$
unit spec Cont_Comp $=\ldots$
> Display, parsing, and literal syntax annotations apply to entire libraries.

library UserManual/Examples

```
\%display _-<=_- \%LATEX _- \(\leq\)
\%display _->=_- \%LATEX _- \(\geq\) -
\%display _-union_- \%LATEX _- \(\cup\) _-
```

\%prec $\{--+$--, --- --\} < \{--* --\}
\%left_assoc
\qquad* --
spec Strict_Partial_Order $=\ldots$
spec Partial_Order $=$ Strict_Partial_Order then $\ldots \leq \ldots$
spec Generated_Set [sort Elem] $=\ldots$.....
spec Integer_Arithmetic_Order $=\ldots \leq \ldots \geq \ldots$

Parsing annotations allow omission of grouping parentheses when terms are input. A single annotation can indicate the relative precedence or the associativity (left or right) of a group of operation symbols. The precedence annotation for infix arithmetic operations given above, namely:
\%prec $\{--+\ldots,-----\}<\{--*--\}$
allows a term such as $a+(b * c)$ to be input (and hence also displayed) as $a+b * c$. The left-associativity annotation for + and $*$:
\%left_assoc \qquad
allows $(a+b)+c$ to be input as $a+b+c$, and similarly for $*$; but the parentheses cannot be omitted in $(a+b)-c$ (not even if '_-__' were to be included in the same left-associativity annotation).

When an operation symbol is declared with the associativity attribute assoc, an associativity annotation for that symbol is provided automatically.
＞Libraries and library items can have author and date annotations．
library Usermanual／Examples
\％authors（ Michel Bidoit 〈bidoit＠lsv．ens－cachan．fr〉，
Peter D．Mosses \langle pdmosses＠brics．dk $) \%$
\％dates 15 Oct 2003， 1 Apr 2000
spec Strict＿Partial＿Order $=\ldots$
\％authors Michel Bidoit 〈bidoit＠lsv．ens－cachan．fr〉
\％dates 10 July 2003
spec Integer＿Arithmetic＿Order＝
> Libraries can be installed on the Internet for remote access. Validated libraries can be registered for public access.
library BASIC/Numbers
\%left_assoc \qquad
\%number _-@@_-
\%floating _-:::--, ,-E
\%prec $\left\{--E_{--}\right\}<\{--:::-\quad\}$
spec NAT $=$
free type $N a t::=0 \mid \operatorname{suc}(N a t)$
ops $\quad 1: N a t=\operatorname{suc}(0) ; \ldots ; 9: N a t=\operatorname{suc}(8)$;
-@@($m, n: N a t): N a t=(m * \operatorname{suc}(9))+n$
spec $\operatorname{Int}=$ Nat then
spec $R_{\text {at }}=$ Int then \ldots
spec DecimalFraction $=$ Rat then
ops _-:::-_ : Nat \times Nat \rightarrow Rat;
${ }_{\text {_-_ }}$ _- $: R a t \times$ Int \rightarrow Rat
> Libraries should include appropriate annotations.
> Libraries can include items downloaded from other libraries.
library Basic/StructuredDatatypes
from Basic/Numbers get Nat, Int
spec List [sort Elem] given NAT $=\ldots$
spec Array \ldots given $\operatorname{Int}=\ldots$
from Basic/Numbers get Nat \mapsto Natural, Int \mapsto Integer
> Substantial libraries of basic datatypes are already available.

BASIC/Numbers: natural numbers, integers, and rationals.
BASIC/RELATIONSANDORDERS: reflexive, symmetric, and transitive relations, equivalence relations, partial and total orders, boolean algebras.

BASIC / AlgEbRA_I: monoids, groups, rings, integral domains, and fields.
BASIC/SimpleDatatypes: booleans, characters.
Basic/StructuredDatatypes: sets, lists, strings, maps, bags, arrays, trees.
BASIC / Graphs: directed graphs, paths, reachability, connectedness, colorability, and planarity.

BASIC/AlgEBRA_II: monoid and group actions on a space, euclidean and factorial rings, polynomials, free monoids, and free commutative monoids.

Basic/LinearAlgebra_I: vector spaces, bases, and matrices.
BASIC/LinEARALgEBRA_II: algebras over a field.
Basic/MachineNumbers: bounded subtypes of naturals and integers.

- Libraries need not be registered for public access.
library http://www.cofi.info/CASL/Test/Security
from http://casl:password@www.cofi.info/CASL/RSA get KEY spec $\operatorname{DECRYPT}=$ KEY then \ldots
> Subsequent versions of a library are distinguished by explicit version numbers.
library BASIC/NUMBERS version 1.0
spec $\mathrm{NAT}=\ldots$
spec \quad Int $=$ NAT then \ldots
spec $R A T=$ Int then \ldots
- Libraries can refer to specific versions of other libraries.
library Basic/StructuredDatatypes version 1.0
from Basic/Numbers version 1.0 get Nat, Int
spec List [sort Elem] given $\mathrm{NAT}=\ldots$
spec Array \ldots given $\operatorname{Int}=\ldots$
> All downloadings should be collected at the beginning of a library.

Tools

> The Heterogeneous Tool Set (HETS) is the main analysis tool for CASL.

- CASL specifications can also be checked for well-formedness using a form-based web page.
- Hets can be used for parsing and checking static well-formedness of specifications.
- Hets also displays and manages proof obligations, using development graphs.
- Nodes in a development graph correspond to CASL specifications. Arrows show how specifications are related by the structuring constructs.
- Internal nodes in a development graph correspond to unnamed parts of a structured specification.
- Hol-Casl is an interactive theorem prover for Casl, based on the tactical theorem prover Isabelle.
- Casl is linked to Isabelle/Hol by an encoding.
- Asf+Sdf was used to prototype the Casl syntax.
- The Asf+Sdf Meta-Environment provides syntax-directed editing of CASL specifications.

Architecture of the heterogeneous tool set.

