The Programming Language Core

The Programming Language Core

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, A-4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz

The Programming Language Core

The Programming Language Core

e “Core” of values and operations establish
fundamental capabilities of a language.

— Numerical computation: numeric values.
— Text editing: string values.

— General purpose: core for many applications.
e Starting point for language design.

e Design programs and study their computa-
tional powers.

e Later extend core by conveniences.

— Subroutines, modules, . ..

Let's study the nature of a programming lan-
guage core!

Wolfgang Schreiner 1

The Programming Language Core

A Core Imperative Language

A while loop language
e Syntax domains.

e Syntax rules.

C € Command
E € Expression
L € Location
N € Numeral

C = L:=E | Cy;C, | if E then C, else C, fi
| while E do C od | skip

E:=N | OL | E,+Es | —E | E,=E>

L ::= loc;, if 2 > 0

N ::=n, if n € Integer

Example
locy := 0; while @/oc;=0 do locy:=0QJloc;+1 od

Wolfgang Schreiner

The Programming Language Core

Abstract Syntax

e Non-terminal symbols.
- GC E L N.

— Variables over syntax trees.

e Terminal symbols.
— ©, +, :=, skip

— Labels of syntax trees.

e Inductive definition of syntax trees.

Abstract syntax defines syntax trees!

Wolfgang Schreiner

The Programming Language Core

Example

loc; := 0; while @/oc;=0 do locy:=@/oc;+1 od

C
; C
L.=E while E do C od
loc_1 ‘ ‘ ‘
N E=E L=
0 loc_2
@L N E+E
loc 10 ‘ ‘
@L N
loc 11

Semantics gives meaning to syntax trees!

Wolfgang Schreiner

The Programming Language Core

Typing Rules

e Abstruct syntax does not define well-
formed programs only.

— Phrase “(0=1)+2" allowed.

— Cannot add boolean to integer.
e Refine abstract syntax definition.

— Integer and boolean expressions.
— Define two distinct syntax domains?

— Better: add typing annotations!
o Attributed syntax trees

— Type attributes to all phrase forms.

— Syntax tree is well typed if type attributes can be attached
to all of its nonterminals.

Inference rules used for describing type struc-
tures.

Wolfgang Schreiner 5

The Programming Language Core

Example
C: comm
C: comm : C: comm
L:intloc := E:intexp while E:boolexp do C:comm od
loc_1 ‘ ‘

N:int E:intexp =E:intexp L:intloc := E:intex|

0 loc_2
@ L:intloc N: int E:intexp + E:int
loc_1 0 ‘ ‘
@ L:intloc N
loc 1 1

Each subtree is annotated with its type!

Wolfgang Schreiner

The Programming Language Core

Typing Rules

Command
L: intloc E: intexp Ci: comm Cy: comm
L:=E: comm C1:Co: comm

E: boolexp Ci: comm Cy: comm
if E then C; else C; fi: comm

E: boolexp C: comm
while E do C od: comm

skip: comm

Expression
N: int L: intloc
N: intexp OL: intexp
Ei: intexp Es: intexp E: boolexp
Ei+Ey: intexp —E: boolexp

Ei: Texp Es: Texp

E\—E,: boolexp if 7 € {int, bool}

| ocation Numeral

loc;: intloc, if 1 > 0 n: int, if n € Integer

Wolfgang Schreiner

The Programming Language Core

Typing Rules

e One typing rule for each construction of
each syntax rule.

e Conditions under which constructions are
well typed.

e Linear Notation (full type annotation):

_ ((/Ocl)int/oc::((o)int)intexp
(while
((@(/Ocl)intIOC)intexp :((0)int)intexp)boo/exp
(do (/OCQ)int/OC:.:
((@(/Ocl)/nt/ocyntexp_'_
((1)int)intexp)/ntexp)comm)comm)comm_

e Abbreviation (root type annotation):

— Jocy := 0;
while @/oc;=0 do locy:=@loc;+1 od: comm

Wolfgang Schreiner 8

The Programming Language Core

Typing Rules

e Logic assertion U:7.
— Tree U is well typed with type T.
e Static typing for language.

— Type attributes can be calculated without evaluating the
program.

e Strongly typed language.

— No run-time incompatibility errors.
e Unicity of typing.

— Can a syntax tree be typed in multiple ways?
e Soundness of typing rules.

— Are the typing rules sensible in their assignment of type
attributes to phrases?

Questions will be addressed later.

Wolfgang Schreiner 9

The Programming Language Core

Induction and Recursion

Syntax rule
E ::=true | -E | E;&E,
e Inductive definition:

— true is in Expression.
— If E is in Expression, then so is —E.
— If E; and E5 are in Expression, then so is E; &E,.

— No other trees are in expression.

e Expression = set of trees!
e Generate all trees in stages.

— stagey = {}.
— stage;,1 = stage; U { —E | E € stage;} U { E{&E, | Ey,
E, € stage;}.

— Expression = U,>(stage;.

e Any tree in Expression is constructed in a
finite number of stages.

Wolfgang Schreiner 10

The Programming Language Core

Structural Induction

e Proof technique for syntax trees.

— Goal: prove P(t) for all trees t in a a language.

— Inductive base: Prove that P holds for all trees in stage.

— Inductive hypothesis: Assume that P holds for all trees in
stages stage; with 7 <.

— Inductive step: Prove that P holds for all trees in stage;.

e Prove P(t) for all trees t in Expression.

— P(true) holds.
— P(—E) holds assuming that PP(E) holds (for arbitrary E).

— P(E;&E,) holds assuming that P(E;) holds and P(E,)
holds (for arbitrary E;, Es).

Syntax rules guide the proof!

Wolfgang Schreiner 11

The Programming Language Core

Unicity of Typing

Can a syntax tree be typed in multiple ways?
e Unicity of typing property.

— Every syntax tree has as most one assignment of typing
attributes to its nodes.

— If P:7 holds, then 7 is unique.
e Unicity of Typing holds for Numeral.

— By single typing rule, if N:7 holds, then 7 = int (for all N
€ Numeral).

e Unicity of Typing holds for Location.

— By single typing rule, if L:7 holds, then 7 = intloc (for all
L € Location).

Wolfgang Schreiner 12

The Programming Language Core

Unicity of Typing

e Unicity of typing holds for Expression:

— Case N. N:int holds. By single typing rule, N:intexp holds.

— Case E;+E,. By inductive hypothesis, E;:7; and Es:79
hold for unique 71 and 75. By single typing rule,
Ei:intexp and Es:intexp must hold. If 7y=79 =intexp,
then E;+Ey:intexp. Otherwise, E;4+E5 has no typing.

e Unicity of typing holds for Command:

— Case L := E. L:intloc holds. E:7 holds for unique 71. By
single typing rule, 71 must be intexp to have L:=E: comm.
Otherwise, L:=E has no typing.

Unicity of typing holds for all four syntax do-
mains.

Wolfgang Schreiner 13

The Programming Language Core

Typing Rules Define a Language

e Typing rules (not abstract syntax) define
language.
— Only well-formed programs are of value.
— Programs are well-typed trees.
e Significance of unicity of typing:
— Linear representation without type annotations represents
(at most) one program.

— Example: 0+1.
e Without unicity of typing:

— Coherence: different tree derivations of a linear represen-
tation should have same meaning.

E:intexp Ei:realexp Es:realexp

E:realexp Ei+Es:realexp
_ (((0)int_|_(1)int)intexp)rea/exp_

_ ((((0)int)intexp)rea/exp n
(((1)int)in texp) rea/exp) realexp

Wolfgang Schreiner 14

The Programming Language Core

Proof Trees

Programs may be directly derived from typing
rules.

e Typing rules form a logic.
e Set of axioms and inference rules.

o (Inverted) trees are logic proof trees.

loc_1: intloc 1:|int
loc_1: intloc O:int @Ioc_ll: intexp 1: intexp
@Ioc_lz intexp (l): intexp loc_2: intloc E_l +I1: intexp
/ |
Ec_l =0 : intexp loc_2 ::@Ioc_lﬁnm
~ /

while @loc_1 =0 do loc_2 :=@loc_1+10d : comm

Wolfgang Schreiner 15

The Programming Language Core

Semantics of the Core Language

Denotational semantics
e Recursively defined function.

— Mapping of a well-typed derivation tree to its mathematical
meaning.

e Semantic algebras.

— Meaning sets (domains) and operations.
— Bool, Int, Location, Store.

e For each typing rule, a recursive defini-
tion.

L: intloc E: intexp

L:=E: comm

— [[L:=E: comml]] ...
= ...[[L: intloc]] .. .[[E: intexp]] ...

e Compositional semantic definitions.

— Meaning of tree constructed from meanings of its subtrees.

Function [[.]] is read as “the meaning of”

Wolfgang Schreiner 16

The Programming Language Core

Semantic Algebras

Bool = {true, false}
not: Bool — Bool
not(false) = true; not(true) = false
equalbool: Bool x Bool — Bool
equalbool(m, n) = (m=n)

Int ={...,-1,0,1, ...}

plus: Int X Int — Int
plus(m, n) = m+n

equalint: Int x Int — Bool
equalint(m, n) = (m=n)

Location = {loc; | i > 0}

Wolfgang Schreiner

17

The Programming Language Core

Semantic Algebras

Store = { (ny,no, ..., Ny)
|n; €nt, 1<i<m,m>0}
lookup: Location x Store — Int
lookup(locj, (ny,ma,....0j, Ny)) =0,
(if 7 > m, then lookup(loc;, {(ni,...,n,)) =0)
update: Location x Int x Store — Store

update(loc;, j, (n1,no,...,nj, ..., Ny)) =
T T T U

(if j > m, then update(loc;, n, (ny,....ny)) =
(N1, M2,y np))

if: Bool x Store, x Store; — Store|
if (true, s1, $2) = $1
if (false, s1, $2) = $9
(Store, = Store U { L},
1 = "bottom” = non-termination)

Wolfgang Schreiner

18

The Programming Language Core

Command Semantics

[[.: comml]]: Store — Store |

[[L:=E: comml]](s) =
update([[L: intloc]], [[E: intexp]](s), s)
[[C1;Ca: comml]](s) =
[[Ca: comm]|([[C1: comml]](s))
[[if E then C, else C; fi: comm]|(s) =
if ([[E: boolexp]](s),
[[Ci: comml]](s), [[Co: comm]](s))
[[while E do C od: comm]|(s) = w(s)
where w(s) =
if ([[E: boolexp]|(s), w([[C: comm]](s)), s)
[[skip: comml]](s) = s

The meaning of a command is a function from

Store to Store.

Wolfgang Schreiner

19

The Programming Language Core

Expression Semantics

[[.: _exp]]: Store — (Int U Bool)
[[N: intexp]](s) = [[N: int]]
[[OL: intexp]|(s) = lookup([[L: intloc]], s)
[[-E: boolexp]](s) = not([[E: boolexp]](s))
[E+Es: intexpl](s) —

plus([[E1: intexp]|(s), [[Eo: intexp]](s))
[[E1=E,: boolexpl|(s) =

equalbool([[Ei: boolexp]](s), [[E2: boolexp]](s))
[[E1=E,: boolexpl|(s) =

equalint([[Ey: intexp]|(s), [[E2: intexp]](s))

[[.: intloc]]: Location

([loc;: intloc]] = loc;

[.: int]]: Int

([n: int]] = n

The meaning of an expression is a function
from Store to Int or Bool.

Wolfgang Schreiner 20

The Programming Language Core

Example

P=Q;R

Q = locy:=1; R = if @locy=0 then skip else S fi
S = loc;:=0locs+4

[[P: comml]](s)

~ [[R: comm]i([[Q: comm]](s))

= [[R: comml]|update(locs, 1, s)

= if([[@locy=0: boolexp||update(locs, 1, s),
[[skip: comml]|update(locs, 1, s),
[[S: comm]|update(loc,y, 1, s))

= if(false, [[skip: comm]||update(locsy, 1, s),
[[S: comm]|update(loc,y, 1, s))

= [[S: comml]|update(locs, 1, s)

= update(loc,
[[@loco+4: intexp]|update(locs, 1, s),
update(locsy, 1, s))

= update(locy, 5, update(locs, 1, s))

Program semantics can be studied indepen-

dently of specific storage vector!

Wolfgang Schreiner

21

The Programming Language Core

Soundness of the Typing Rules.

Are the typing rules sensible in their assign-

ment of type attributes to phrases?

e Typing rules must be sound.

— Every well-typed program has a meaning.
e Type attributes:

— 71 = int | bool

— 0 := intloc | Texp | comm

e Mapping of attributes to meanings:

 {linel) = e
— [[bool]] = Bool
— [[intloc]] = Location

— [[rexp]] = Store — [[7]]
— [[comm]| = Store — Store |

How are [[P:0]] and [[0]] related?

Wolfgang Schreiner

22

The Programming Language Core

Soundness Theorem

[[P:0]] € [|0]], for every well-typed phrase P:6

e Case n: int
— [[n: int]] = n € Int = [[int]]
e Case QL: intexp

— We know [[L: intloc]] = I € [[intloc]] = Location. Then,
for every Store s, [[OL: intexpl|(s) = lookup(l, s) € Int
i.e. [[OL: intexp]] € Store — Int = [[intexp]].

e Case (C{;Cy: comm

— We know [[C;: comml]] and [[Co: comm]] are ele-
ments of Store — Store,. For every Store s, we have
[[C1;Co: comm]](s) = [[Co: comm]]([[Ci: comm]](s))
and [[Co:comm]|(s) = s € Store,. If s;=1, [[Cy:
comm||(s;)=L € Store;. If sy € Store, then [[Cy:
comm|](s1) € Store;. Hence, [[C;Cy: comm]|| € Store
— Store; = [[comm]].

Prove one case for each typing rule.

Wolfgang Schreiner 23

The Programming Language Core

Operational Properties

e Denotational semantics constructs mathe-
matical functions.

— Function extensionality for reasoning.

e Operational semantics reveals computa-
tional patterns.

— Computation steps undertaken for evaluating the program.

e Denotational semantics has operational
flower.

— [[loc3:=@loc;+1: comml]|(3,4,5)
= update(locs,
[[@loc,+1: intexp]](3.4,5), (3,4,5))
= update(locs, 4, (3,4,5))
= (3,4.4)

Can we use denotational definitions as oper-
ational rewrite rules?

Wolfgang Schreiner 24

The Programming Language Core

Denotations as Rewrite Rules

Op. semantics reduces programs to values.

e A program is a phrase [[C: comml]]s.
e Values are from semantic domains.
— Booleans, numerals, locations, storage vectors.
e Equational definitions get rewrite rules.
— Denotation: f(z1,z2,...,2,) =v
— Rule: f(xy,z9,...,2,) = v
e Computation is a sequence of rewrite steps
po =" pn.
— Py =PI == .

— Each computation step p;, = p;.1 replaces a subphrase
(the redex) in p; according to some rewrite rule.

o If p,, Is a value, computation terminates.

Which properties shall semantics fulfill?

Wolfgang Schreiner 25

The Programming Language Core

Properties of Operational Semantics

e Soundness.

/

— If p has an underlying “meaning” m and p = p/, then p
means m as well.

— By definition of =-.
e Subject reduction.

— If p has an underlying “type” 7 and p = p/, then p/ has 7
as well.

— By soundness of typing.
e Strong typing.

— If p is well-typed and p = ¢/, then p’ contains no operator-
operand incompatibilities.

— By induction over computation rules.
e Computational adequacy.

— A program p's underlying meaning is a proper meaning m,
if there is some value v such that p = v and v means m.

Wolfgang Schreiner 26

The Programming Language Core

Computability of Phrases

e Predicate compy (computable):

— compjpiioc(P) = p =" v and v means [where [€ Loca-
tion is the meaning of p.

— comprexp(p) := p(s) = v and v means n where s €
Store and p(s) means n € [[7]].

(
— compcomm(p) := p(s) =" v and v means s’ where s €
Store and p(s) means s’ € Store.

e compy[[U: 6]] holds for all well-typed
phrases U: 6.

— Induction on typing rules.

Computational adequacy follows from sound-
ness of typing, soundness of operational se-
mantics and the computability of phrases.

Wolfgang Schreiner 27

The Programming Language Core

Design of a Language Core

Contradictory design objectives:

e Oriented towards a specific problem area.

e General purpose.

e User friendly.

e Efficient implementation possible.

e Extensible by new language features.
e Secure agains programming errors.

e Simple syntax and semantics.

e Logical support for verification.

Design is an artistic activity!

Wolfgang Schreiner

28

The Programming Language Core

Orthagonality

e A language should be based on few fun-
damental principles that may be combined
without unneccessary restrictions.

e Orthagonal languages are easier to under-
stand for programmers and implementors.

e Denotational semantics may help to
achieve this.

— Define sets of meanings and operations.
— Give syntactic representations.

— Organize into abstract syntax definition.

In the following we will study a set of basic
design principles.

Wolfgang Schreiner 29

