
Computer-Supported Program Verification
with the RISC ProofNavigator

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/32

1. An Overview of the RISC ProofNavigator

2. Specifying Arrays

3. Verifying the Linear Search Algorithm

4. Conclusions

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/32

The RISC ProofNavigator

An interactive proving assistant for program verification.
Research Institute for Symbolic Computation (RISC), 2005–:

http://www.risc.uni-linz.ac.at/
research/formal/software/ProofNavigator.

Development based on prior experience with PVS (SRI, 1993–).
Kernel and GUI implemented in Java.
Uses external SMT (satisfiability modulo theories) solver.

CVCL (Cooperating Validity Checker Lite) 2.0.

Runs under Linux (only); freely available as open source (GPL).
A language for the definition of logical theories.

Based on a strongly typed higher-order logic (with subtypes).
Introduction of types, constants, functions, predicates.

Computer support for the construction of proofs.
Commands for basic inference rules and combinations of such rules.
Applied interactively within a sequent calculus framework.
Top-down elaboration of proof trees.

Designed for simplicity of use; applied to non-trivial verifications.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/32

Using the Software

For survey, see “Program Verification with the RISC ProofNavigator”.
For details, see “The RISC ProofNavigator: Tutorial and Manual”.

Develop a theory.
Text file with declarations of types, constants, functions, predicates.
Axioms (propositions assumed true) and formulas (to be proved).

Load the theory.
File is read; declarations are parsed and type-checked.
Type-checking conditions are generated and proved.

Prove the formulas in the theory.
Human-guided top-down elaboration of proof tree.
Steps are recorded for later replay of proof.
Proof status is recorded as “open” or “completed”.

Modify theory and repeat above steps.
Software maintains dependencies of declarations and proofs.
Proofs whose dependencies have changed are tagged as “untrusted”.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/32

Starting the Software

Starting the software:
ProofNavigator & (32 bit machines at RISC)
ProofNavigator64 & (64 bit machines at RISC)

Command line options:
Usage: ProofNavigator [OPTION]... [FILE]

FILE: name of file to be read on startup.

OPTION: one of the following options:

-n, --nogui: use command line interface.

-c, --context NAME: use subdir NAME to store context.

--cvcl PATH: PATH refers to executable "cvcl".

-s, --silent: omit startup message.

-h, --help: print this message.

Repository stored in subdirectory of current working directory:
ProofNavigator/

Option -c dir or command newcontext "dir" :
Switches to repository in directory dir.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/32

The Graphical User Interface

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/32

The Software Architecture

Parser
ANTLR

ANTLR

OMDoc/OpenMath XML

Declaration/Proof
Representation

Proof Tree Proof State / Declarations

Output

Eclipse SWT

Mozilla

ProofNavigator GUI

Input

Server
HTTP

Parser

Java

CVCL
C++

XHTML/MathML

Declaration/Proof
Presentation

ProofNavigator

Browser
Web

RIACA OMlib
DOM

DOM

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/32

Software Components

Graphical user interface.

Display of declarations and proof state.
Embeds HTML browser as core component.

Proof engine.

Commands for navigating the proof.
Interaction with validity checker to simplify/close proof states.

Validity checker.

Simplifies formulas
Checks the validity of formulas.
Produces counterexamples for (presumedly) invalid formulas.

Object repository.

Proof persistence.
Proof status management.

All data are externally represented in (gzipped) XML.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/32

A Theory

% switch repository to "sum"

newcontext "sum";

% the recursive definition of the sum from 0 to n

sum: NAT->NAT;

S1: AXIOM sum(0)=0;

S2: AXIOM FORALL(n:NAT): n>0 => sum(n)=n+sum(n-1);

% proof that explicit form is equivalent to recursive definition

S: FORMULA FORALL(n:NAT): sum(n) = (n+1)*n/2;

Declarations written with an external editor in a text file.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/32

Proving a Formula

When the file is loaded, the declarations are pretty-printed:

The proof of a formula is started by the prove command.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/32

Proving a Formula

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/32

Proving a Formula

Proof of formula F is represented as a tree.
Each tree node denotes a proof state (goal).

Logical sequent:
A1, A2, . . . ⊢ B1, B2,
Interpretation:
(A1 ∧ A2 ∧ . . .) ⇒ (B1 ∨ B2 ∨ . . .)

Initially single node Axioms ⊢ F .

Constants: x0 ∈ S0, . . .

[L1] A1

. . .
[Ln] An

[Ln+1] B1

. . .
[Ln+m] Bm

The tree must be expanded to completion.
Every leaf must denote an obviously valid formula.

Some Ai is false or some Bj is true.

A proof step consists of the application of a proving rule to a goal.

Either the goal is recognized as true.
Or the goal becomes the parent of a number of children (subgoals).

The conjunction of the subgoals implies the parent goal.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 12/32

An Open Proof Tree

Closed goals are indicated in blue; goals that are open (or have open
subgoals) are indicated in red. The red bar denotes the “current” goal.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/32

A Completed Proof Tree

The visual representation of the complete proof structure; by clicking on
a node, the corresponding proof state is displayed.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/32

Navigation Commands

Various buttons support navigation in a proof tree.

: prev

Go to previous open state in proof tree.

: next

Go to next open state in proof tree.

: undo

Undo the proof command that was issued in the parent of the current
state; this discards the whole proof tree rooted in the parent.

: redo

Redo the proof command that was previously issued in the current
state but later undone; this restores the discarded proof tree.

Single click on a node in the proof tree displays the corresponding state;
double click makes this state the current one.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/32

Proving Commands

The most important proving commands can be also triggered by buttons.

(scatter)
Recursively applies decomposition rules to the current proof state and
to all generated child states; attempts to close the generated states
by the application of a validity checker.

(decompose)

Like scatter but generates a single child state only (no branching).

(split)
Splits current state into multiple children states by applying rule to
current goal formula (or a selected formula).

(auto)
Attempts to close current state by instantiation of quantified formulas.

(autostar)
Attempts to close current state and its siblings by instantiation.

Automatic decomposition of proofs and closing of proof states.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/32

Proving Commands

More commands can be selected from the menus.

assume
Introduce a new assumption in the current state; generates a sibling
state where this assumption has to be proved.

case:
Split current state by a formula which is assumed as true in one child
state and as false in the other.

expand:
Expand the definitions of denoted constants, functions, or predicates.

lemma:
Introduce another (previously proved) formula as new knowledge.

instantiate:
Instantiate a universal assumption or an existential goal.

induction:
Start an induction proof on a goal formula that is universally
quantified over the natural numbers.

Here the creativity of the user is required!
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/32

Auxiliary Commands

Some buttons have no command counterparts.

: counterexample

Generate a “counterexample” for the current proof state, i.e. an
interpretation of the constants that refutes the current goal.

Abort current prover activity (proof state simplification or
counterexample generation).

Show menu that lists all commands and their (optional) arguments.

Simplify current state (if automatic simplification is switched off).

More facilities for proof control.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/32

Proving Strategies

Initially: semi-automatic proof decomposition.

expand expands constant, function, and predicate definitions.
scatter aggressively decomposes a proof into subproofs.
decompose simplifies a proof state without branching.
induction for proofs over the natural numbers.

Later: critical hints given by user.

assume and case cut proof states by conditions.
instantiate provide specific formula instantiations.

Finally: simple proof states are yielded that can be automatically
closed by the validity checker.

auto and autostar may help to close formulas by the heuristic
instantiation of quantified formulas.

Appropriate combination of semi-automatic proof decomposition, critical
hints given by the user, and the application of a validity checker is crucial.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/32

1. An Overview of the RISC ProofNavigator

2. Specifying Arrays

3. Verifying the Linear Search Algorithm

4. Conclusions

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/32

A Constructive Definition of Arrays

% constructive array definition

newcontext "arrays2";

% the types

INDEX: TYPE = NAT;

ELEM: TYPE;

ARR: TYPE =

[INDEX, ARRAY INDEX OF ELEM];

% error constants

any: ARRAY INDEX OF ELEM;

anyelem: ELEM;

anyarray: ARR;

% a selector operation

content:

ARR -> (ARRAY INDEX OF ELEM) =

LAMBDA(a:ARR): a.1;

% the array operations

length: ARR -> INDEX =

LAMBDA(a:ARR): a.0;

new: INDEX -> ARR =

LAMBDA(n:INDEX): (n, any);

put: (ARR, INDEX, ELEM) -> ARR =

LAMBDA(a:ARR, i:INDEX, e:ELEM):

IF i < length(a)

THEN (length(a),

content(a) WITH [i]:=e)

ELSE anyarray

ENDIF;

get: (ARR, INDEX) -> ELEM =

LAMBDA(a:ARR, i:INDEX):

IF i < length(a)

THEN content(a)[i]

ELSE anyelem ENDIF;

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 21/32

Proof of Fundamental Array Properties

% the classical array axioms as formulas to be proved

length1: FORMULA

FORALL(n:INDEX): length(new(n)) = n;

length2: FORMULA

FORALL(a:ARR, i:INDEX, e:ELEM):

i < length(a) => length(put(a, i, e)) = length(a);

get1: FORMULA

FORALL(a:ARR, i:INDEX, e:ELEM):

i < length(a) => get(put(a, i, e), i) = e;

get2: FORMULA

FORALL(a:ARR, i, j:INDEX, e:ELEM):

i < length(a) AND j < length(a) AND

i /= j =>

get(put(a, i, e), j) = get(a, j);

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/32

Proof of a Higher-Level Array Property

% extensionality on low-level arrays

extensionality: AXIOM

FORALL(a, b:ARRAY INDEX OF ELEM):

a=b <=> (FORALL(i:INDEX):a[i]=b[i]);

% unassigned parts hold identical values

unassigned: AXIOM

FORALL(a:ARR, i:INT):

(i >= length(a)) => content(a)[i] = anyelem;

% extensionality on arrays to be proved

equality: FORMULA

FORALL(a:ARR, b:ARR): a = b <=>

length(a) = length(b) AND

(FORALL(i:INDEX): i < length(a) => get(a,i) = get(b,i));

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/32

1. An Overview of the RISC ProofNavigator

2. Specifying Arrays

3. Verifying the Linear Search Algorithm

4. Conclusions

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/32

A Program Verification

Verification of the following Hoare triple:

{olda = a ∧ oldx = x ∧ n = |a| ∧ i = 0 ∧ r = −1}

while i < n ∧ r = −1 do
if a[i] = x

then r := i

else i := i + 1

{a = olda ∧ x = oldx ∧
((r = −1 ∧ ∀i : 0 ≤ i < |a| ⇒ a[i] 6= x) ∨
(0 ≤ r < |a| ∧ a[r] = x ∧ ∀i : 0 ≤ i < r ⇒ a[i] 6= x))}

Find the smallest index r of an occurrence of value x in array a (r = −1,
if x does not occur in a).

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 25/32

The Verification Conditions

A :⇔ Input ⇒ Invariant

B1 :⇔ Invariant ∧ i < n ∧ r = −1 ∧ a[i] = x ⇒ Invariant[i/r]
B2 :⇔ Invariant ∧ i < n ∧ r = −1 ∧ a[i] 6= x ⇒ Invariant[i + 1/i]
C :⇔ Invariant ∧ ¬(i < n ∧ r = −1) ⇒ Output

Input :⇔ olda = a ∧ oldx = x ∧ n = length(a) ∧ i = 0 ∧ r = −1

Output :⇔ a = olda ∧ x = oldx ∧
((r = −1 ∧ ∀i : 0 ≤ i < length(a) ⇒ a[i] 6= x) ∨
(0 ≤ r < length(a) ∧ a[r] = x ∧ ∀i : 0 ≤ i < r ⇒ a[i] 6= x))

Invariant :⇔ olda = a ∧ oldx = x ∧ n = length(a) ∧
0 ≤ i ≤ n ∧ ∀j : 0 ≤ j < i ⇒ a[j] 6= x ∧
(r = −1 ∨ (r = i ∧ i < n ∧ a[r] = x))

The verification conditions A,B1,B2,C have to be proved.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/32

The Verification Conditions

newcontext

"linsearch";

% declaration

% of arrays

...

a: ARR;

olda: ARR;

x: ELEM;

oldx: ELEM;

i: NAT;

n: NAT;

r: INT;

Input: BOOLEAN = olda = a AND oldx = x AND

n = length(a) AND i = 0 AND r = -1;

Output: BOOLEAN = a = olda AND

((r = -1 AND

(FORALL(j:NAT): j < length(a) =>

get(a,j) /= x)) OR

(0 <= r AND r < length(a) AND get(a,r) = x AND

(FORALL(j:NAT):

j < r => get(a,j) /= x)));

Invariant: (ARR, ELEM, NAT, NAT, INT) -> BOOLEAN =

LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):

olda = a AND oldx = x AND

n = length(a) AND i <= n AND

(FORALL(j:NAT): j < i => get(a,j) /= x) AND

(r = -1 OR (r = i AND i < n AND get(a,r) = x));

...

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 27/32

The Verification Conditions (Contd)

...

A: FORMULA

Input => Invariant(a, x, i, n, r);

B1: FORMULA

Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) = x

=> Invariant(a,x,i,n,i);

B2: FORMULA

Invariant(a, x, i, n, r) AND i < n AND r = -1 AND get(a,i) /= x

=> Invariant(a,x,i+1,n,r);

C: FORMULA

Invariant(a, x, i, n, r) AND NOT(i < n AND r = -1)

=> Output;

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 28/32

The Proofs

A: B1:

(2 user actions) (1 user action)

B2: C:

(3 user actions) (6 user actions)

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 29/32

1. An Overview of the RISC ProofNavigator

2. Specifying Arrays

3. Verifying the Linear Search Algorithm

4. Conclusions

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/32

Conclusions

So what does this experience show us?

Parts of a verification can be handled quite automatically:

Top-down proof decomposition.
Propositional logic reasoning.
Equality reasoning.
Linear arithmetic.

Manual control for crucial “creative steps”

Expansion of definitions.
Proof cuts by assumptions/case distinctions.
Application of additional lemmas.
Instantiation of quantified formulas.

Proving assistants can do the essentially simple but usually tedious parts
of the proof; the human nevertheless has to provide the creative insight.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 31/32

Popular Proving Assistants

PVS: http://pvs.csl.sri.com

SRI (Software Research Institute) International, Menlo Park, CA.
Integrated environment for developing and analyzing formal specs.
Core system is implemented in Common Lisp.
Emacs-based frontend with Tcl/Tk-based GUI extensions.

Isabelle/HOL: http://isabelle.in.tum.de

University of Cambridge and Technical University Munich.
Isabelle: generic theorem proving environment (aka “proof assistant”).
Isabelle/HOL: instance that uses higher order logic as framework.
Decisions procedures, tactics for interactive proof development.

Coq: http://coq.inria.fr

LogiCal project, INRIA, France.
Formal proof management system (aka “proof assistant”).
“Calculus of inductive constructions” as logical framework.
Decision procedures, tactics support for interactive proof development.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 32/32

	An Overview of the RISC ProofNavigator
	Specifying Arrays
	Verifying the Linear Search Algorithm
	Conclusions

