
Fundamentals of Numerical Analysis and

Symbolic Computation

Exercise (June 4)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

April 28, 2009

The result is to be submitted by the deadline stated above via the Moodle in-
terface of the course “Fundamentals of Numerical Analysis and Symbolic Com-
putation” as a PDF file (with an appropriate cover page and a section for each
exercise, hand-written results are also acceptable but have to be scanned and
included in the file).

Exercise 1: Queues

Specify an abstract datatype with sort Queue whose values represent queues
of elements from sort Elem. The datatype shall support at least the following
operations:

• empty . . . the empty queue.

• enqueue(e, q) . . . the queue constructed from queue q by appending ele-
ment e to the tail of q.

• front(q) . . . the element at the front of q.

• dequeue(q) . . . the queue constructed from q by removing the front element.

• length(q) . . . the number of elements in q.

A queue obeys the FIFO (“first in/first out”) principle i.e. the first element
enqueued is also the first element dequeued.

Write a loose specification with (possibly free) constructors and use in your
formulations of the axioms (possibly conditional) equational logic. You may
leave the sort Elem unspecified.

Write a second specification of a sort PQueue whose elements represent priority
queues of elements.. A priority queue differs from an ordinary queue in that
front(q) does not return the element at the front of q but the smallest element
of q (according to a relation ≤ : Elem×Elem → Bool which is to be specified
as a total order).

1



Exercise 2: Graphs

Specify an abstract datatype with sort Graph whose values represent finite di-
rected graphs. The datatype shall support at least the following operations:

• empty . . . the empty graph,

• vertex (v, g) . . . the graph constructed from graph g by adding vertex v.

• arc(v1, v2, g) . . . the graph constructed from graph g by adding an arc from
vertex v1 to vertex v2.

• isvertex (v, g) . . . true iff v is a vertex in g.

• isarc(v1, v2, g) . . . true iff there is an arc from v1 to v2 in g.

• vertices(g) . . . the set of vertices of g.

• incoming(v, g) . . . the set of vertices in g such that there exists an arc from
each of these vertices to v.

• indegree(v, g) the number of arcs in g with target v.

• outgoing(v, g) . . . the set of vertices in g such that there exists an arc
from v to each of these vertices.

• outdegree(v, g) . . . the number of arcs in g with source g.

• maxindeg(g) . . . the maximum number of arcs leading to a vertex in g.

• maxoutdeg(g) . . . the maximum number of arcs leaving a vertex in g.

• remove(v1, v2, g) . . . the graph constructed from g by removing the arc
from v1 to v2.

• remove(v, g) . . . the graph constructed from g by removing vertex v (and
all arcs from/to v).

• order(g) the number of vertices in g.

• size(g) the number of arcs in g.

• connected(v1, v2, g) . . . true iff there exists a path (a possibly empty se-
quence of edges) from v1 to v2 in g.

• distance(v1, v2, g) . . . the length of the shortest path from v1 to v2 in g.

You may leave the sort Vertex of vertices unspecified and assume the usual set
operations as predefined.

Write a loose specification with (possibly free) constructors and use in your
formulations of the axioms full predicate logic with equality.

Do not overconstrain your specifications by defining concrete operation results
for “erroneous” inputs; if your operations only make sense under certain as-
sumptions, make these explicit as antecedents of implications, e.g.

∀v :Vertex , g :Graph . isvertex (v, g) ⇒ indegree(v, g) = . . .

2


